References
- C. Adams, The knot book, W.H. Freeman and Company. 1994.
- S. Baader, Bipartite graphs and combinatorial adjacency, preprint, arXiv:1111.3747.
- R. Furihata, M. Hirasawa and T. Kobayashi, Seifert surfaces in open books, and a new coding algorithm for links, Bull. Lond. Math. Soc. 40 (3) (2008), 405-414. https://doi.org/10.1112/blms/bdn020
- D. Gabai, Genera of the arborescent links, Mem. Amer. Math. Soc. 59 (339) (1986) I.VIII, 1-98.
- J. Gross and T. Tucker, Topological graph theory, Wiley-Interscience Series in discrete Mathematics and Optimization, Wiley & Sons, New York, 1987.
- D. Kim, Basket, flat plumbing and flat plumbing basket surfaces derived from induced graphs, preprint, arXiv:1108.1455.
- D. Kim, Y.S. Kwon and J. Lee, String surfaces, string indexes and genera of links, preprint, arXiv:1105.0059.
- L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1) (1983) 1-37. https://doi.org/10.1007/BF02564622
- L. Rudolph, Hopf plumbing, arborescent Seifert surfaces, baskets, espaliers, and homogeneous braids, Topology Appl. 116 (2001), 255-277. https://doi.org/10.1016/S0166-8641(00)90091-9
- H. Seifert, Uber das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.
- J. Stallings, Constructions of fibred knots and links, in: Algebraic and Geometric Topology (Proc. Sympos. PureMath., Stanford Univ., Stanford, CA, 1976), Part 2, Amer. Math. Soc., Providence, RI, 1978, pp. 55-60.
- T. Van Zandt. PSTricks: PostScript macros for generic TEX. Available at ftp://ftp. princeton.edu/pub/tvz/.
Cited by
- vol.36, pp.2, 2014, https://doi.org/10.5831/HMJ.2014.36.2.399