DOI QR코드

DOI QR Code

Analysis of Genetic Diversity in Thirteen Turfgrass Cultivars Cultivated at Golf Courses Using RAPD Markers

RAPD마커를 이용한 국내골프장의 잔디 13 품종의 유전적 다양성 분석

  • Kim, Min-Jeong (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Tae-Soo (Division of Applied Life Science Graduate School, Gyeongsang National University) ;
  • Shim, Chang-Ki (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Yong-Ki (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jee, Hyeong-Jin (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration)
  • 김민정 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 김태수 (경상대학교 응용생명과학대학원) ;
  • 심창기 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 김용기 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 지형진 (농촌진흥청 국립농업과학원 유기농업과)
  • Received : 2012.07.31
  • Accepted : 2012.09.04
  • Published : 2012.12.31

Abstract

This study was carried our to examine the genetic relationship of 13 commercial turfgrass cultivars using Random Amplified Polymorphic DNA to provide genetic informations more efficient golf course management. Analysis of 56 random hexamer primers generated 13 to 54 polymorphic bands among the 13 cultivars with an average of 30.7 bands per primer. The results of cluster analysis based on RAPDs revealed that three major variety groups: Group I - 'Shadow II', 'Aurora Gold', 'Little Bighorn Blue', 'PennA-1', and 'PennA-4'; Group II - 'Midnight II', 'Prosperity', 'Moon light SLT', 'Bright star SLT', and 'Silver dollar'; and Group III - 'Olympic Gold', 'Silver Star', and 'Tar Heel II'. The genetic similarity coefficients among 13 turfgrass cultivars ranged from 0.039 to 1.0 with highest coefficient in Group III. Studies on morphological characters and the effective molecular markers such as sequence characterized amplified regions are further needed to identify relationships and genetic diversities within species and among species.

본 연구는 무작위 분자마커(RAPD)를 이용한 우리나라 골프장에서 이용되고 있는 잔디 13개 잔디품종의 유전적 다형성을 조사하여 보다 효과적인 골프장 관리를 위한 유전적 정보를 제공하고자 조사하였다. 본 연구에서 사용한 54개의 random hexamer primer를 이용하여 RAPD분석을 실시한 결과 13~54개의 다형성 밴드를 형성하였으며 primer당 평균 30.7개의 다형성 밴드를 확인할 수 있었다. RAPD분석 결과 13개의 잔디품종은 크게 3개의 그룹으로 나눌 수 있었다. Group I은 Shadow II, Aurora Gold, Little Big Horn Blue, PennA-1, PennA-4, Group II는 Midnight II, Prosperity, Moonlight SLT, Bright Star SLT, Silver Dollar, Group III은 Olympic Gold Turf-Type, Silver Star Turf-Type, Tar Heel II Turf-Type을 포함하였다. 13개 잔디 품종의 유전적 근연 정도는 0.039~1.0으로 나타났으며, Group III이 유전적 근연 정도가 가장 높게 나타났다. 이상의 결과를 통해 향후, 잔디 종 또는 이종간의 유전적 다양성의 상호관계나 차이점을 규명하기 위해서는 형태적인 특성과 SCARs 마커와 같은 특이적인 분자마커에 대한 연구가 추가적으로 필요할 것으로 사료된다.

Keywords

References

  1. Alderson, J. and Sharp, W.C. 1994. Grass varieties in United States. USDA-SCS Agriculture Handbook. 170. U.S. Gov. Print. Office, Washington, DC.
  2. Al-Humaid, A. and Motawei, M.I. 2004. Molecular characterization of some turfgrass cultivars using randomly amplified polymorphic DNA (RAPD) markers. J. Food Agri. & Envi. 2:376-380.
  3. Acharya, S.N., Darroch, B.A., Hermesh, R. and Woosaree, J. 1992. Salt stress tolerance in native alberta populations of slender wheatgrass and alpine bluegrass. Can. J. Plant Sci. 72:785-792. https://doi.org/10.4141/cjps92-094
  4. Beard, J.B. 1973. Turfgrass: Science and Culture. Prentice-Hall, Engle-wood Cliffs, NJ. U.S.A.
  5. Bostein, D., White, R.L., Skolnick, M. and Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
  6. Caetano-Anolles, G. and Gresshoff, P.M. 1996. Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers. Biotechniques 20:1044-1056.
  7. Caetano-Anolles, G., Bassam, B.J. and Gresshoff, P.M. 1991. DNA amplification fingerprinting using very shot arbitrary primers. Nature Biotech. 9:553-557. https://doi.org/10.1038/nbt0691-553
  8. Chang, S.W., Chang, T.H., Yang, G.M., Choi, J.S. and Rho, Y.T. 2010. Resistance evaluation of several turfgrass species and graminious crop species against Rhizoctonia cerealis and Typhula incarnate under controlled conditions. Korean Turfgrass Sci. 24:9-15. (In Korean)
  9. Chang, S.W., Chang, T.H., Choi, B.J., Song, J.H., Park, K.S. and Rho, Y.T. 2009. Antagonistic effects of Pseudomonas spp. Against turfgrass pathogenic soil fungi. Korean Turfgrass Sci. 23:209-218.
  10. Choi, J.S. and Yang, G.M. 2006. Development of new cultivar 'Millock' in Zoysiagrass. Korean Turfgrass Sci. 20:1-10. (In Korean)
  11. Cockerham, S.T., Gibeault, V.A. and Borgonovo, M. 1994. Traffic effects on turfgrasses under restricted light. California Turfgrass Culture 44:1-3.
  12. Doyle, J.J. and Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15.
  13. Golembiewski, R.C., Danneberger, T.K. and Sweeney, P.M. 1997. Potential of RAPD markers for use in the identification of creeping bentagrass cultivars. Crop Sci. 37:212-214. https://doi.org/10.2135/cropsci1997.0011183X003700010036x
  14. Hartley, W. and Williams, R.J. 1956. Centres of distribution of cultivated pasture grasses and their significance for plant introduction. pp. 190-199. In: Proc. 7th Int. Grassland Conf., Palmerston North, N.Z.
  15. Hitchcock, A.S. 1950. Manual of the grasses of the United States. USDA Misc. Publ. No. 200. U.S. Govt. Print., Washington, D.C.
  16. Im, S.H. and Kim, D.H. 1999. Selection of resistant lines against large patch disease in Zoysiagrass. Pp. 9-10. In: Proceeding of Korean Turfgrass Soc. 12.
  17. Kim, K.S., Sifers, S.I. and Beard, J.B. 1987. Comparative drought resistances among major warm-season turfgrass species and cultivars. Texas Turfgr. Res. Consolidated Prog. Rep. PR- 4521:28-30. Texas Agric. Exp. Stn., Texas A&M Univ., College Station, TX.
  18. Kubik, C., Honig, J., William, A.M. and Stacy, A.B. 2009. Genetic diversity of creeping bentagrass cultivars using SSR markers. Int. Turfgrass Soc. Res. J. 11:533-547.
  19. Litt, M. and Luty, J.A. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44:397-401.
  20. Nyborm, H. 1990. Application of DNA fingerprinting in plant breeding. Proc. Intern. DNA Fingerprinting Symposium. Bern, Switzerland. pp. 32-45.
  21. Palumbi, S.R. 1996. Nucleic acid II: The polymerase chain reaction, pp. 205-247. In: D. M. Hillis, C. Mortiz, and B. K. Mable (Eds). Molecular systematic. Sinauer Assoc., Sunderlnd, Mass.
  22. Rafalski, J.A. and Tingery, S.V. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Gen. 9:275-280. https://doi.org/10.1016/0168-9525(93)90013-8
  23. Sweeney, P.M. and Danneberger, T.K. 1996. Restriction digestion of arbitrary amplification fragments of annual bluegrass. Crop Sci. 36:1301-1303. https://doi.org/10.2135/cropsci1996.0011183X003600050038x
  24. Thorogood, D. 2003. Chapter 7. Perennial Rygrass (Lolium perenne L.). In: Turfgrass Biology, Genetics, and Breeding. M. D. Casler and R. D. Duncan (Eds). John Wiley & Sons, Inc. Hoboken, N.J. pp 75-105.
  25. Warnke, S.E., Douches, D.S. and Branham, B.E. 1997. Relationships among creeping bentagrass cultivars based on isozyme polymorphism. Crop Sci. 37:203-207. https://doi.org/10.2135/cropsci1997.0011183X003700010034x
  26. Weber, J.L. and May, P.E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44:388-396.
  27. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingery, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535. https://doi.org/10.1093/nar/18.22.6531
  28. Wu, L. 1981. The potential for evolution of salinity tolerance in Agrostis stolonifera L. and Agrostis tenuis Sibth. New Phytol. 89:471-486. https://doi.org/10.1111/j.1469-8137.1981.tb02328.x