DOI QR코드

DOI QR Code

전기저항 측정법을 이용한 탄소섬유/기지 간 계면에서의 섬유 미끌림 정도 측정방법

Measurement of Electrical Resistance Method in Characterizing the Slip ratio of Carbon fiber/Matrix at the Interface

  • 권동준 (경상대학교 나노.신소재공학부 대학원) ;
  • 왕작가 (경상대학교 나노.신소재공학부 대학원) ;
  • 구가영 (경상대학교 나노.신소재공학부 대학원) ;
  • 박종만 (경상대학교 나노.신소재공학부)
  • 투고 : 2012.09.28
  • 심사 : 2012.12.13
  • 발행 : 2012.12.31

초록

전기저항 측정법을 이용하여 단일 탄소섬유의 인장 실험을 실시하였다. 탄소섬유의 전도성을 이용하여 인장하중에 따른 신율과 전기저항 변화도간의 관계를 연구하였다. 섬유 인장 과정동안에 일정 신율 거리상 응력과 전기저항 변화율간의 상관관계를 통계적으로 정리하였다. 결과에 대해 추세선을 그어 섬유의 변형에 따른 거동 모델을 구성하였다. 프레그먼테이션 시편을 이용하여 인장 실험에 따른 인장 응력이 재료 내부로 전달되면서, 시편 내부 탄소섬유에도 인장 응력이 가해져 기지보다 섬유가 먼저 파괴되었다. 이 경우 탄소섬유의 전기저항 변화도를 측정한 결과 값을 탄소섬유의 거동 모델에 대입하여 프레그먼테이션 시편 내부에 있었던 탄소섬유의 거동을 분석할 수 있었다. 탄소섬유의 인장 신율을 예측하고 프레그먼테이션 시편의 실제 신율을 비교하여 섬유와 기지 사이에 발생된 섬유 미끌림 정도를 확인하였다. 섬유 미끌림 정도의 수치가 클 경우, 기지와 섬유 간 계면 상태가 약한 접합의 상태였다. 이러한 결과를 확인하기 위해서 접착일 평가법을 이용하였으며, 두 실험법의 결과, 동일한 경향임을 확인하였다.

The single carbon fiber tensile test was performed with electrical resistance measurement. Tensile property of single carbon fiber which accompanied by the relationship between the electric resistance and the strain was investigated. Since the collected data showed a linear relationship between them, the coefficient of fiber slip ratio (FSR) was obtained by computation. The fragmentation specimen (FS) was tested under tensile loading, and the single carbon fiber broke first due to the stress transferring form matrix to reinforcing fiber. The stress distribution of carbon fiber could be observed via the electrical resistance change. Slipping between carbon fiber and matrix was predicted based on the fragmentation test results, and the FSR was used to evaluate interfacial adhesion comparatively. The large FSR indicated poor interfacial bonding. Work of adhesion between carbon fiber and matrix was measured to verify the FSR method, and two results exhibited a consistent conclusion.

키워드

참고문헌

  1. Lubineau, G., and Rahaman, A., "A Review Of Strategies For Improving The Degradation Properties Of Laminated Continuous-Fiber /Epoxy Composites With Carbon-Based Nanoreinforcements," Carbon, Vol. 50, No. 7, 2012, pp. 2377-2395. https://doi.org/10.1016/j.carbon.2012.01.059
  2. Lu, P., Feng, Y.Y., Zhang, P., Chen, H.M., Zhao, N., and Feng, W., "Increasing The Interfacial Strength In Carbon Fiber/Epoxy Composites By Controlling The Orientation And Length Of Carbon Nanotubes Grown On The Fibers," Journal of Composite Materials, Vol. 49, No. 14, 2011, pp. 4665-4673.
  3. Awal, A., Cescutti, G., Ghosh, S.B., and Mussig, J., "Interfacial Studies Of Natural Fiber/Polypropylene Composites Using Single Fiber fragmentation Test(SFFT)," Composites: Part A, Vol. 42, No. 1, 2011, pp. 50-56. https://doi.org/10.1016/j.compositesa.2010.10.007
  4. Li, J., Huang, Y., Xu, Z., and Wang, Z., "High-Energy Radiation Technique Treat On The Surface Of Carbon Fiber," Materials Chemistry and Physics, Vol. 94, No. 2-3. 2005, pp. 315-321. https://doi.org/10.1016/j.matchemphys.2005.05.007
  5. Hickman, G.J.S., Wallace, L.F., Burks, V.A., and Hsiao, K.T., "Effects of carbon nanofiber Reinforcments in Adhesive Bonding of CFRP," 2010 SAMPE Fall, Salt lake city, Utha, U.S.A., Nov. 2010.
  6. Difrancia, C., Thomas, C.W., and Richard, O.C., "The Single-Fibre Pull-Out Test. 1: Review and Interpretation," Composites Part A, Vol. 27, No. 8, 1996, pp. 597-612. https://doi.org/10.1016/1359-835X(95)00069-E
  7. Park, J.M., Tran, Q.S., Hwang, B.S., and DeVries, K.L., "Interfacial Evaluation Of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers(PP-MAPP) Composites Using Micromechanical Technique And Nondestructive Acoustic Emission," Composites Science and Technology, Vol. 66, No. 15, 2006, pp. 2686- 2699. https://doi.org/10.1016/j.compscitech.2006.03.014
  8. Park, J.M., Kim, D.S., and Kim, S.R., "Improvement Of Interfacial Adhesion And Nondestructive Damage Evaluation For Plasma-Treated PBO And Kevlar Fibers/Epoxy Composites Using Micro- mechanical Technuques And Surface Wettability," Journal of Colloid and Interface Science, Vol. 264, No. 2, 2003, pp. 431-445. https://doi.org/10.1016/S0021-9797(03)00419-3
  9. Kwon, D.J., Wang, Z.J., Gu, G.Y., Um, M.G., and Park, J.M., "Inherent And Interfacial Evaluation Of Fibers/Epoxy Composites By Micromechanical Tests At Cryogenic Temperature," Journal of the Korean Society for Composite Materials, Vol. 24, No. 4, 2011, pp. 11-16. https://doi.org/10.7234/kscm.2011.24.4.011
  10. Wang, Z.J., Kwon, D.J., Gu, G.Y., Lee, W.I., Park, J.K., and Park, J.M., "Plasma Treatment Of Carbon Nanotubes And Interfacial Evaluation Of CNT-Phenolic Composites by Acoustic Emission And Dual Matrix Techniques," Journal of the Korean Society for Composite Materials, Vol. 25, No. 3, 2012, pp. 76-81. https://doi.org/10.7234/kscm.2012.25.3.076
  11. Shindo, Y., Kuronuma, Y., Takeda, T., Narita, F., and Fu, S.Y., "Electrical Resistacne Change and Crack Behavior In Carbon Nanotube/Polymer composites Under tensile Loading," Composites Part B, Vol. 43, No. 1, 2012, pp. 39-43. https://doi.org/10.1016/j.compositesb.2011.04.028
  12. Grammatikos, S.A., and Paipetis, A.S., "On the electrical properties of multi scale reinforced composites for damage accumulation monitoring," Composites Part B, Vol. 43, No. 6, 2012, pp. 2687-2696. https://doi.org/10.1016/j.compositesb.2012.01.077
  13. Fern, N., Alam, P., Touaiti, F., and Toivakka, M., "Fatigue Life Predictions of Porous Composite Paper Coatings," International Journal of Fatigue, Vol. 38, 2012, pp. 181- 187. https://doi.org/10.1016/j.ijfatigue.2011.11.005
  14. Gao, L.M., Chou, T.W., Thostenson, E.T., Zhang, Z., and Coulaud, M., "In Situ Sensing Of Impact Damage In Epoxy/Glass Fiber Composites Using Percolating Carbon Nanotube Networks," Carbon, Vol. 49, No. 10, 2011, pp. 3371-3391. https://doi.org/10.1016/j.carbon.2011.03.055
  15. Park, J.M., Wang, Z.J., Kwon, D.J., Gu, G.Y., Lee, W.I., Park J.K., and DeVries K.L., "Self-Sensing Of Carbon Fiber/ Carbon Nanofiber-Epoxy Composites With Two Different Nanofiber Aspect Ratios Investigated By Electrical Resistance And Wettability Measurements," Composites Part A, Vol. 41, No. 11, 2010, pp. 1702-1711. https://doi.org/10.1016/j.compositesa.2010.08.005
  16. Li, C., and Chou, T.W., "Modeling of damage sensing in fiber composites using carbon nanotube networks," Composites Science and Technology, Vol. 68, Vol. 15-16, 2008, pp. 3373-3379. https://doi.org/10.1016/j.compscitech.2008.09.025