DOI QR코드

DOI QR Code

Biological Effect of Vaccinium uliginosum L. on STZ-induced Diabetes and Lipid Metabolism in Rats

들쭉이 약물에 의해 유도된 당뇨 및 지질대사에 미치는 생리활성 효과

  • Han, Eun-Kyung (Dept. of Food and Nutrition and Korea Nutrition Institute, Hallym University) ;
  • Kwon, Hyuck-Se (Dept. of Food and Nutrition and Korea Nutrition Institute, Hallym University) ;
  • Shin, Se-Gye (Dept. of Food and Nutrition and Korea Nutrition Institute, Hallym University) ;
  • Choi, Yoon-Hee (Dept. of Food and Nutrition and Korea Nutrition Institute, Hallym University) ;
  • Kang, Il-Jun (Dept. of Food and Nutrition and Korea Nutrition Institute, Hallym University) ;
  • Chung, Cha-Kwon (Dept. of Food and Nutrition and Korea Nutrition Institute, Hallym University)
  • 한은경 (한림대학교 식품영양학과, 한국영양연구소) ;
  • 권혁세 (한림대학교 식품영양학과, 한국영양연구소) ;
  • 신세계 (한림대학교 식품영양학과, 한국영양연구소) ;
  • 최윤희 (한림대학교 식품영양학과, 한국영양연구소) ;
  • 강일준 (한림대학교 식품영양학과, 한국영양연구소) ;
  • 정차권 (한림대학교 식품영양학과, 한국영양연구소)
  • Received : 2012.09.12
  • Accepted : 2012.10.11
  • Published : 2012.12.31

Abstract

This study was conducted to investigate the effects of Vaccinium uliginosum L. (bilberry) on chemically induced diabetes and hypercholesterolemia. Sprague Dawley (SD) rats were divided into six groups, control (CON), bilberry added group (CBB), streptozotocin (STZ)-induced diabetic group (STZ), STZ and bilberry added group (SBB), high fat fed group (HFF) and high fat and bilberry added group (HFB). Diabetes was chemically induced by intravenous injection of 45 mg/kg body weight STZ in citrate buffer (pH 4.5). Serum triglycerides decreased significantly (p<0.05) in the STZ group that was fed bilberry. Additionally, the athrogenic index (AI) decreased significantly (p<0.05) when compared to the STZ group, while the liver triglycerides tended to decrease in the STZ group. HDL-cholesterol also increased significantly in response to bilberry. When compared to the STZ group, steady attenuation of the blood glucose level was observed upon fasting, 15 min, 30 min, 60 min and 120 min after oral glucose administration. The blood glucose level in the bilberry fed group decreased by 24% when compared to STZ group, while the superoxide dismutase (SOD) became significantly higher (p<0.05) in the STZ group when compared to the CON group. Overall, the results of this study suggest that bilberry stimulates lipid metabolism in both the serum and liver and has a positive effect on glucose metabolism in chemically induced diabetic rats.

본 연구는 들쭉을 투여한 흰쥐를 대상으로 고지방과 당뇨를 유발시킨 후의 생리활성 변화를 조사하였다. 수컷 SD rat를 정상군, 고지방군, 당뇨군으로 분류, 들쭉투여군과 대조군으로 분류하였다. 들쭉은 식이 5% 첨가의 경우 식이 섭취량이 증가하였으나, 체중증가량은 감소시켰다. 들쭉의 투여는 또한 STZ에 의해 유발된 당뇨대조군의 증가된 혈청 중성지질 수준을 감소시켰고, HDL-cholesterol 수준을 유의적(p<0.05)으로 증가시켰으며, 당뇨로 증가된 동맥경화지수 수치를 유의적(p<0.05)으로 감소시켰다. 간 지질의 경우 고지방 식이로 인해 증가된 총지질량과 총콜레스테롤, 중성지질을 감소시켰다. 이는 들쭉의 투여가 지질대사를 촉진하는 것으로 사료된다. 지질 과산화물은 고지방의 투여와 당뇨유발로 증가하였고 들쭉의 병용투여가 이를 감소시켰으나 유의성은 없었다. Oral glucose tolerance test(경구당부하검사)에서 정상군에서는 혈당의 변화가 거의 관찰되지 않았으며, 당뇨유발쥐의 포도당 투여 후 30분에서 261.20 mg/dL로 높은 혈당을 들쭉 투여로 약 27% 정도 감소시키고, 120분 후에는 공복 수준으로 혈당 수준을 회복시키는 것으로 나타났다. 따라서 들쭉의 투여는 당뇨쥐의 혈청과 지질대사를 개선하고 당대사를 촉진하여 혈당을 강하시키며, 간의 항산화효소 활성을 증가시킴과 동시에 지질과산화량을 감소시켜 간 기능을 개선시키는 것으로 사료되며 고지방으로 지방간을 유도한 흰쥐의 혈청과 간 지질대사를 촉진함으로써 당뇨발생 시 간기능 보호와 더불어 당뇨의 예방에 도움을 줄 수 있을 것으로 사료된다.

Keywords

References

  1. Park SW, Kim DJ, Min KW, Baik SH, Choi KM, Park IB, Park JH, Son HS, Ahn CW, Oh JY, Lee J, Chung CH, Kim J, Kim H. 2007. Current status of diabetes management in Korea using national health insurance database. J Korean Diabetes Assoc 31: 362-367. https://doi.org/10.4093/jkda.2007.31.4.362
  2. Tai ES, Lim SC, Tan BY, Chew SK, Heng D, Tan CE. 2000. Screening for diabetes mellitus-a two-step approach in individuals with impaired fasting glucose improves detection of those at risk of complications. Diabet Med 17: 771-775. https://doi.org/10.1046/j.1464-5491.2000.00382.x
  3. Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M. 2003. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51: 68-75. https://doi.org/10.1021/jf025781x
  4. Chung YH, Hyun JO. 1989. Monographic study of the endemic plant in Korea Ⅺ. Taxonomy and interspecific relationships of the genus Vaccinium. Korean J Environ Biol 7: 1-17.
  5. Anderson OM. 1987. Anthocyanins in fruits of Vaccinium uliginosum L. (bog whortleberry). J Food Sci 52: 665-666. https://doi.org/10.1111/j.1365-2621.1987.tb06698.x
  6. Zhao C, Giusti MM, Malik M, Moyer MP, Magnuson BA. 2004. Effects of commercial anthocyanin-rich extracts on colonic cancer and nontumorigenic colonic cell growth. J Agric Food Chem 52: 6122-6128. https://doi.org/10.1021/jf049517a
  7. Roy S, Khanna S, Alessio HM, Vider J, Bagchi D, Bagchi M, Sen CK. 2002. Anti-angiogenic property of edible berries. Free Radic Res 36: 1023-1031. https://doi.org/10.1080/1071576021000006662
  8. Ramirez MR, Izquierdo I, do Carmo Bassols Raseira M, Zuanazzi JA, Barros D, Henriques AT. 2005. Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmacol Res 52: 457-462. https://doi.org/10.1016/j.phrs.2005.07.003
  9. Foster S. 1997. Bilberry: food and medicine. The Herb Companion 68-69.
  10. Viljanen K, Kylli P, Kivikari R, Heinonen M. 2004. Inhibition of protein and lipid oxidation in liposomes by berry phenolics. J Agric Food Chem 52: 7419-7424. https://doi.org/10.1021/jf049198n
  11. Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  12. Bligh EG, Dyer WJ. 1959. A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37: 911-917. https://doi.org/10.1139/o59-099
  13. Abei H. 1974. Catalase Methods of Enzymatic Analysis II. Academic press, New York, NY, USA. p 673-684.
  14. Cropo HC, McCord MJ, Fridovich I. 1978. Preparation and assay of superoxide dismutase. In Methods in Enzymology. Fleischer S, Packer I, eds. Academic press, New York, NY, USA. Vol 52, p 382-383.
  15. Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione Stransferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130-7139.
  16. Jareno EJ, Bosch-Morell F, Fernandez-Delgado R, Donat J, Romero FJ. 1998. Serum malondialdehyde in HIV seropostive children. Free Radic Biol Med 24: 503-506. https://doi.org/10.1016/S0891-5849(97)00168-8
  17. Kim HC, Jhoo WK, Choi DY, Im DH, Shin EJ, Suh JH, Floyd RA, Bing G. 1999. Protection of methamphetamine nigrostriatal toxicity induced by dietary selenium. Brain Res 851: 76-86. https://doi.org/10.1016/S0006-8993(99)02122-8
  18. Beppu H, Maruta K, Kurner T, Kolb H. 1987. Diabetogenic action of streptozotocin: essential role of membrane permeability. Acta Endocrinol (Copenh) 114: 90-95.
  19. Goldberg RB. 1981. Lipid disorders in diabetes. Diabetes Care 4: 561-572. https://doi.org/10.2337/diacare.4.5.561
  20. Dai S, Thompson KH, McNeill JH. 1994. One-year treatment of streptozotocin-induced diabetic rats with vanadyl sulphate. Pharmacol Toxicol 74: 101-109. https://doi.org/10.1111/j.1600-0773.1994.tb01083.x
  21. Steer KA, Sochor M, McLean P. 1985. Renal hypertrophy in experimental diabetes. Changes in pentose phosphate pathway activity. Diabetes 34: 485-490. https://doi.org/10.2337/diabetes.34.5.485
  22. Grey NJ, Karls I, Kiphis DM. 1975. Physiologic mechanisms in the development of starvation ketosis in man. Diabetes 24: 10-16. https://doi.org/10.2337/diabetes.24.1.10
  23. Lee KH, Chung SH. 2000. Antidiabetic effect and mechanism of Mori folium on streptozotocin-induced diabetic mouse. Bull KH Pharma Sci 28: 87-99.
  24. Durrington PN, Stephens WP. 1980. The effects of treatment with insulin on serum high-density-lipoprotein cholesterol in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 59: 71-74. https://doi.org/10.1042/cs0590071
  25. Sung TS, Son GM, Bae MJ, Choi C. 1992. Effect of Acanthopanacis Cortex boiling extract solution on fat accumulation in the obese rats induced by high fat dietary. J Korean Soc Food Nutr 21: 9-16.
  26. Koh JB. 1998. Effect of raw soy flour (yellow and black) on serum glucose and lipid concentration in streptozotocin- induced diabetic rats. J Korean Soc Food Sci Nutr 27: 313-318.
  27. Choi JW, Sohn KH, Kim SH. 1991. The effects of nicotinamide on the serum lipid composition in streptozotocin-induced diabetic rats. J Korean Soc Food Nutr 20: 306-311.
  28. Lim SJ, Kim KJ. 1995. Hypoglycemic effect of Polygonatum odoratum var. Pluriflorum Ohwi extract in streptozotocin- induced diabetic rats. Korean J Nutr 28: 727-736.
  29. Lim SJ, Choi SS. 1997. The effect of Trichosanthes kirilowii Max. subfraction on the insulin activity in streptozotocin induced diabetic rats and their acute toxicity. Korean J Nutr 30: 25-31.
  30. Lim SJ, Kim SY, Lee JW. 1995. The effects of Korean wild vegetables on blood glucose levels and liver-muscle metabolism of streptozotocin-induced diabetic rats. Korean J Nutr 28: 585-594.
  31. Kim MW. 2001. Effects of $H_2O$-fraction of Dioscorea japonica Thunb and selenium on lipid peroxidation in streptozotocin- induced diabetic rats. Korean J Soc Food Cookery Sci 17: 344-352.
  32. Scharrer A, Ober M. 1981. Anthocyanosides in the treatment of retinopathies. Klin Monbl Augenheilkd 178: 386-389. https://doi.org/10.1055/s-2008-1057228
  33. Oilver Bever B, Zahnd GR. 1979. Plants with oral hypoglycaemic action. Pharm Biol 17: 139-196. https://doi.org/10.3109/13880207909065167
  34. Stefanovic A, Kotur-Stevuljevic J, Spasic S, Bogavac-Stanojević N, Bujisic N. 2008. The influence of obesity on the oxidative stress status and the concentration of leptin in type 2 diabetes mellitus patients. Diabetes Res Clin Pract 79: 156-163. https://doi.org/10.1016/j.diabres.2007.07.019
  35. Cho YS, Jang EM, Jang SM, Chun MS, Shon MY, Kim MJ, Lee MK. 2007. Effect of grape seed water extract on lipid metabolism and erythrocyte antioxidant defense system in high-fat diet-induced obese C57BL/6 mice. J Korean Soc Food Sci Nutr 36: 1537-1543. https://doi.org/10.3746/jkfn.2007.36.12.1537
  36. Kim MJ, Cho SY, Lee MK, Shin KH. 2004. Effects of Aralia elata water extracts on activities of hepatic oxygen free radical generating and scavenging enzymes in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 33: 653-658. https://doi.org/10.3746/jkfn.2004.33.4.653
  37. Goiffon JP, Brun M, Bourrier MJ. 1991. High-performance liquid chromatography of red fruit anthocyanins. J Chromatogr A 537: 101-121. https://doi.org/10.1016/S0021-9673(01)88890-7
  38. Jonadet M, Meunier MT, Bastide J, Bastide P. 1983. Anthocyanosides extracted from Vitis vinifera, Vaccinium mytillus and Pinus maritimus. I. Elastase-inhibiting activities in vitro. II. Compared angioprotective activities in vivo. J Pharm Belg 38: 41-46.
  39. Martinelli EM, Scilingo A, Pifferi G. 1992. Computer-aided evaluation of the relative stability of Vaccinium myrtillus anthocyanins. Anal Chim Acta 259: 109-113. https://doi.org/10.1016/0003-2670(92)85082-H
  40. Martin-Aragon S, Basabe B, Benedí JM, Villar AM. 1998. Antioxidant action of Vaccinium myrtillus L. Phytother Res 12: S104-S106. https://doi.org/10.1002/(SICI)1099-1573(1998)12:1+<S104::AID-PTR265>3.0.CO;2-O
  41. Choi MY, Choi EJ, Lee E. 1999. Effect of Rhus chinensis gall extract of liver fraction, plasma lipid composition and antioxidant system in rats with high fat diet. J Korean Soc Food Sci Nutr 28: 632-637.
  42. Cho SY, Park JY, Park EM, Choi MS, Lee MK, Jeon SM, Jang MK, Kim MJ, Park YB. 2002. Alternations of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clin Chim Acta 317: 109-117. https://doi.org/10.1016/S0009-8981(01)00762-8

Cited by

  1. Effect of Lactobacillus acidophilus, Oenococcus oeni, and Lactobacillus brevis on Composition of Bog Bilberry Juice vol.8, pp.10, 2012, https://doi.org/10.3390/foods8100430
  2. An Anthocyanin-Enriched Extract from Vaccinium uliginosum Improves Signs of Skin Aging in UVB-Induced Photodamage vol.9, pp.9, 2012, https://doi.org/10.3390/antiox9090844