DOI QR코드

DOI QR Code

The Effect of 12-O-Tetradecanoylphorbol-13-acetate-induced COX-2 Expression by 3,3'-Diindolylmethane (DIM) on Human Mammary Epithelial Cells

3,3'-Diindolylmethane(DIM)이 Human Mammary Epithelial Cell에서 12-O-tetradecanoylphorbol-13-acetate에 의해 유도된 COX-2 발현에 미치는 영향

  • Park, So Young (Dept. of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University) ;
  • Shim, Jae-Hoon (Dept. of Food Sciences and Nutrition, Hallym University) ;
  • Kim, Jong-Dae (Dept. of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • YoonPark, Jung Han (Dept. of Food Sciences and Nutrition, Hallym University)
  • 박소영 (서울대학교 농업생명공학사업단) ;
  • 심재훈 (한림대학교 식품영양학과) ;
  • 김종대 (강원대학교 농업생명과학대학 식품생명공학과) ;
  • 윤정한 (한림대학교 식품영양학과)
  • Received : 2012.08.16
  • Accepted : 2012.10.10
  • Published : 2012.12.31

Abstract

3,3'-Diindolylmethane (DIM) is a major in vivo derivative of the putative anticancer agent indole-3-carbinol, which is present in cruciferous vegetables and has been reported to have anti-carcinogenic properties. An abnorrmally elevated level of cyclooxygenase-2 (COX-2) has been implicated in the pathogenesis of carcinogenesis. To investigate the mechanism by which DIM exhibits anti-carcinogenic effects, we investigated the effects of DIM on COX-2 expression in MCF-10A human mammary epithelial cells treated with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). DIM inhibited TPA-induced COX-2 expression and suppressed the synthesis of prostaglandin $E_2$, one of the major products of COX-2. Nuclear factor-kappa B ($NF-{\kappa}B$) is a transcription factor known to play a role in regulation of COX-2 expression. Treatment of MCF-10A cells with TPA increased nuclear translocation of phospho-p65, with the maximal levels being reached at 1 hour, while DIM inhibited the TPA-induced nuclear translocation of phospho-p65. Overall, we demonstrated that DIM suppresses phorbol ester-induced $PGE_2$ production and COX-2 expression in MCF-10A cells. The reduction in COX-2 levels by DIM maybe mediated through inhibition of $NF-{\kappa}B$ signaling.

3,3'-Diindolylmethane(DIM)은 십자화과 채소에 포함되어 있는 indole-3-carbinol(I3C)이 동물의 산성 위액에서 중합되어 생성된 물질이다. 지금까지 DIM은 유방암, 전립선암 그리고 대장암 세포주에서 항암효과가 있다고 알려져 있으며 그 기작에 대한 연구도 다양하게 진행되고 있다. 그러나 정상세포에서 암화과정 중 암의 촉진과 진행과정의 주요한 항암 표적인 항염증에 대한 연구는 보고된 바 없다. 따라서 본 연구에서는 유방상피세포인 MCF-10A 세포에 12-O-tetradecanoylphorbol-13-acetate(TPA)로 염증반응을 유도한 후 DIM이 염증작용에 미치는 영향을 조사하였다. 그 결과 MCF-10A 세포에서 TPA에 의해 유도된 COX-2 단백질 및 mRNA 발현이 DIM 처리에 의해 현저히 감소하였다. 또한 TPA에 의해 유도된 $I{\kappa}B-{\alpha}$의 분해, p65의 핵으로의 이동, $NF-{\kappa}B$ DNA binding activity 역시 DIM의 처리에 의해 감소하였다. 이는 DIM이 인간의 유방상피세포인 MCF-10A 세포에서 TPA에 의해 유도된 $NF-{\kappa}B$ 신호전달체계의 활성을 억제함으로써 COX-2의 발현을 억제하여 염증반응을 조절함을 나타낸다. 그러므로 이러한 결과들은 DIM을 염증성 질환 예방제 또는 치료제로 개발할 수 있는 가능성을 시사한다.

Keywords

References

  1. Higdon JV, Delage B, Williams DE, Dashwood RH. 2007. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55: 224-236. https://doi.org/10.1016/j.phrs.2007.01.009
  2. Arnao MB, Sanchez-Bravo J, Acosta M. 1996. Indole-3-carbinol as a scavenger of free radicals. Biochem Mol Biol Int 39: 1125-1134.
  3. Kunimasa K, Kobayashi T, Kaji K, Ohta T. 2010. Antiangiogenic effects of indole-3-carbinol and 3,3'-diindolylmethane are associated with their differential regulation of ERK1/2 and Akt in tube-forming HUVEC. J Nutr 140: 1-6. https://doi.org/10.3945/jn.109.112359
  4. Rogan EG. 2006. The natural chemopreventive compound indole-3-carbinol: state of the science. In Vivo 20: 221-228.
  5. Cho HJ, Seon MR, Lee YM, Kim J, Kim JK, Kim SG, Park JHY. 2008. 3,3'-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. J Nutr 138: 17-23. https://doi.org/10.1093/jn/138.1.17
  6. Willouthby DA. 1975. Human arthritis applied to animal models. Towards a better therapy. Ann Rheum Dis 34: 471-478. https://doi.org/10.1136/ard.34.6.471
  7. Mann JR, Backlund MG, DuBois RN. 2005. Mechanisms of disease: Inflammatory mediators and cancer prevention. Nat Clin Pract Oncol 2: 202-210.
  8. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. 2004. IKK${\beta}$ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285-296. https://doi.org/10.1016/j.cell.2004.07.013
  9. Surh YJ, Na HK. 2008. NF-${\kappa}B$ and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals. Genes Nutr 2: 313-317. https://doi.org/10.1007/s12263-007-0063-0
  10. Laflamme N, Rivest S. 2001. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15: 155-163. https://doi.org/10.1096/fj.00-0339com
  11. Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K. 1994. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. PNAS 91: 3228-3232. https://doi.org/10.1073/pnas.91.8.3228
  12. Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, Subbaramaiah K. 2001. Cyclo-oxygenase-2: a pharmacological target for the prevention of cancer. Lance Oncol 2: 544-551. https://doi.org/10.1016/S1470-2045(01)00488-0
  13. Liu SF, Malik AB. 2005. NF-${\kappa}B$ activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290: L622-L645.
  14. Lawrence T. 2009. The nuclear factor NF-${\kappa}B$ pathway in inflammation. Cold Spring Harb Perspect Biol 1: a001651. https://doi.org/10.1101/cshperspect.a001651
  15. Wang S, Liu Z, Wang L, Zhang X. 2009. NF-${\kappa}B$ signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 6: 327-334. https://doi.org/10.1038/cmi.2009.43
  16. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. 2006. Inflammation and cancer: How hot is the link? Biochem Phamacol 72: 1605-1621. https://doi.org/10.1016/j.bcp.2006.06.029
  17. Peng G, Dixon DA, Muga SJ, Smith TJ, Wargovich MJ. 2006. Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog 5: 309-319.
  18. Goel A, Boland CR, Chauhan DP. 2001. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172: 111-118. https://doi.org/10.1016/S0304-3835(01)00655-3
  19. Brzozowski T, Konturek PC, Drozdowicz D, Konturek SJ, Zayachivska O, Pajdo R, Kwiecien S, Pawlik WW, Hahn EG. 2005. Grapefruit-seed extract attenuates ethanol- and stress-induced gastric lesions via activation of prostaglandin, nitric oxide and sensory nerve pathways. World J Gastroenterol 11: 6450-6458. https://doi.org/10.3748/wjg.v11.i41.6450
  20. Kim EJ, Shin M, Park H, Hong JE, Shin HK, Kim J, Kwon DY, Park JHY. 2009. Oral administration of 3,3'-diindolyl-methane inhibits lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice. J Nutr 139: 2373-2379. https://doi.org/10.3945/jn.109.111864
  21. Kim EJ, Park H, Kim J, Park JHY. 2010. 3,3'-Diindolylmethane suppresses 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and tumor promotion in mouse skin via the downregulation of inflammatory mediators. Mol Carcinog 49: 672-683. https://doi.org/10.1002/mc.20640
  22. Park YM, Won JH, Yun KJ, Ryu JH, Han YN, Choi SK, Lee KT. 2006. Preventive effect of Ginkgo biloba extract (GBB) on the lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 via suppression of nuclear factor-${\kappa}B$ in RAW 264.7 cells. Biol Pharm Bull 29: 985-990. https://doi.org/10.1248/bpb.29.985
  23. Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. 1999. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol 58: 759-765. https://doi.org/10.1016/S0006-2952(99)00160-4
  24. Kim JA, Kong CS, Pyun SY, Kim SK. 2010. Phosphorylated glucosamine inhibits the inflammatory response in LPS-stimulated PMA-differentiated THP-1 cells. Carbohydr Res 345: 1851-1855. https://doi.org/10.1016/j.carres.2010.06.006
  25. Aid S, Bosetti F. 2011. Targeting cyclooxygenases-1 and -2 in neuroinflammation: Therapeutic implications. Biochimie 93: 46-51. https://doi.org/10.1016/j.biochi.2010.09.009
  26. Kwon KH, Barve A, Yu S, Huang MT, Kong AN. 2007. Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models. Acta Pharmacol Sin 28: 1409-1421. https://doi.org/10.1111/j.1745-7254.2007.00694.x
  27. Turco MC, Romano MF, Petrella A, Bisogni R, Tassone P, Venuta S. 2004. NF-${\kappa}B$/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 18: 11-17. https://doi.org/10.1038/sj.leu.2403171