DOI QR코드

DOI QR Code

Functionalities of Squid Liver Hydrolysates

오징어 간 가수분해물의 기능성

  • Lee, Su-Seon (Dept. of Seafood Science and Technology/Institute of Marine Industry, Gyengsang National University) ;
  • Park, Si-Hyang (Sun Marine Biotechnology Co.) ;
  • Park, Joo-Dong (Food R&D, CJ Cheiljedang) ;
  • Konno, Kunihiko (Lab of Food Biochemistry, Faculty of Fisheries, Hokkaido University) ;
  • Choi, Yeung Joon (Dept. of Seafood Science and Technology/Institute of Marine Industry, Gyengsang National University)
  • 이수선 (경상대학교 해양식품공학과/해양산업연구소) ;
  • 박시향 (선마린바이오테크) ;
  • 박주동 (CJ 제일제당 식품연구소) ;
  • ;
  • 최영준 (경상대학교 해양식품공학과/해양산업연구소)
  • Received : 2012.10.16
  • Accepted : 2012.11.19
  • Published : 2012.12.31

Abstract

The autolysate and hydrolysate of a common squid liver, Todarodes pacificus, were prepared. Autolysis (liver ratio, pH, temperature) and Protamex-treated hydrolysis (pH, temperature, ratio of protease to liver) conditions were optimized by response surface methodology using central composite design for under 1 hr of hydrolysis time. The desirability profile indicated that maximum DH could be achieved at a squid liver of 93.5%, pH 6.4, and $47^{\circ}C$ in autolysis, while that of Protamex-treated hydrolysis did at a Protamex-to-squid liver level of 0.33%, pH 6.0, and $55^{\circ}C$. Three amino acids, proline, cysteine, and methionine, were not detected in the total amino acid composition of the Protamex-treated hydrolysate, while they were detected in the free amino acid composition. Cadmium was $8.32{\pm}0.03$ mg/100 g-powder for raw, $3.56{\pm}0.02$ mg/100 g-powder for the autolysate, and $13.26{\pm}0.04$ mg/100 g powder for the Protamex-treated hydrolysate. The major molecular weight ranged from 1.0 to 1.5 kDa for the autolysate and from 210 to 470 Da for the Protamex-treated hydrolysate. Food functionalities of the autolysate, such as surface hydrolphobicity, emulsion activity index, emulsion stability, water, and fat adsorption, were similar to the Protamex-treated hydrolysate. Both the autolysate and Protamex-hydrolysate showed high inhibitory activities on the angiotensin-I converting enzyme. Cell toxicity against the HepG2 cell line was not detected in the autolysate or the Protamex-treated hydrolysate by 200 ${\mu}g/mL$.

북해도산 오징어 간의 유효이용을 목적으로 자가소화물과 Protamex 가수분해물을 제조하고 이들의 식품학적 특성과 몇 가지 기능성을 조사하였다. 자가소화를 위한 최적 조건은 간의 함량 93.5%, pH 6.4, 항온온도 $47^{\circ}C$였으며, Protamex 가수분해의 최적 조건은 오징어 간에 대한 Protamex의 첨가비율 0.33%, pH 6.0, 가수분해온도 $55^{\circ}C$이었다. Promatex 가수분해물의 총 아미노산 조성에서 proline, cysteine 및 methionine이 검출되지 않았으나, 유리아미노산 조성에서는 검출되었다. 오징어 간, 자가소화물 및 Promatex 가수분해물의 카드늄 함량은 건조 중량으로 각각 $8.32{\pm}0.03$ mg/100 g, $3.56{\pm}0.02$ mg/100 g, $13.26{\pm}0.04$ mg/100 g으로서 식품안전 규정 이하의 농도로 감소시키기 위한 별도의 공정이 필요하다. 자가소화물의 주요 저분자 물질의 분자량은 1.0~1.5 kDa인 반면, Protamex 가수분해물은 210~470 Da이었다. 자가소화물과 Protamex 가수분해물 간에 표면 소수성, 유화활성 지표, 유화안정성, 지방 및 수분 흡착능은 큰 차이를 보이지 않았으며, 높은 ACE 효소 저해효과가 관측되었다. 한편 HepG2 세포주에 대한 독성은 200 ${\mu}g/mL$까지 관측되지 않았다.

Keywords

References

  1. Ono S, Hosokawa M, Inoue A, Yamadda D, Takahashi K. 2002. Proteolytic conversion of squid hepatopancreas and upstream chum salmon muscle to angiotensin I-converting enzyme inhibitory peptides. Nippon Suisan Gakkaishi 68: 192-196. https://doi.org/10.2331/suisan.68.192
  2. Kurihara H, Togawa H, Hatano M. 1993. Concentration of cadmium in livers of several kinds of squids and an approach to its elimination. Bull Fac Fish Hokkaido Univ 44: 32-38.
  3. Kristinsson HG, Rasco BA. 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Crit Rev Food Sci Nutr 40: 43-81. https://doi.org/10.1080/10408690091189266
  4. Sugiyama MX, Konosu J, Hamabe M, Okuda Y. 1980. Utilization of squid. Koseisha Koseikaku, Tyoko, Japan. p 80-89.
  5. Hatate H, Tanaka R, Suzuki N, Hama Y. 2000. Comparison of protease activity in liver among several species of squid and cuttlefish. Fish Sci 66: 182-183. https://doi.org/10.1046/j.1444-2906.2000.00031.x
  6. Cardenas-Lopez JL, Haard NF. 2005. Cysteine proteinase activity in jumbo squid (Dosidicus gigas) hepatopancreas extracts. J Food Biochem 29: 171-186. https://doi.org/10.1111/j.1745-4514.2005.00009.x
  7. Komai T, Kawabata C, Tojo H, Gocho S, Ichishima E. 2007. Purification of serine carboxypeptidase from the hepatopancreas of Japanese common squid Todarodes pacificus and its application for elimination of bitterness from bitter peptides. Fish Sci 73: 404-411. https://doi.org/10.1111/j.1444-2906.2007.01348.x
  8. Kim HS, Kim JS, Heu MS. 2008. Fractionation of endoprotease from viscera of the Argentina shortfin squid I llex argentinus. J Kor Fish Soc 41: 176-181.
  9. Xu W, Yu G, Xue C, Xue Y, Ren Y. 2008. Biochemical changes associated with fast fermentation of squid processing by-products for low salt fish sauce. Food Chem 107: 1597-1604. https://doi.org/10.1016/j.foodchem.2007.10.030
  10. Wako Y, Ishikawa S, Muramoto K. 1996. Angiotensin Iconverting enzyme inhibitors in autolysates of squid liver and mantle muscle. Biosci Biotechnol Biochem 60: 1353-1355. https://doi.org/10.1271/bbb.60.1353
  11. Hossain MA, Alikhan MA, Ishihara T, Hara K, Osatomi K, Osaka K, Nazaki Y. 2004. Effect of proteolytic squid protein hydrolysate on the state of water and denaturation of lizardfish (Saurida wanieso) myofibrillar protein during freezing. Innovat Food Sci Emerg Technol 5: 73-79. https://doi.org/10.1016/j.ifset.2003.10.005
  12. Kishimura H, Saeki H, Hayashi K. 2001. Isolation and characteristics of trypsin inhibitor from the hepatopancrease of a squid (Todarodes pacificus). Comp Biochem Physiol B Biochem Mol Biol 130: 117-123. https://doi.org/10.1016/S1096-4959(01)00415-8
  13. Shetty Ak, Kobayashi T, Mizumoto S, Narumi M, Kudo Y, Yamada S, Sugahara K. 2009. Isolation and characterization of a novel chondroitin sulfate from squid liver integument rich in N-acetylgalactosamine(4,6-disulfate) and glucuronate( 3-sulfate) residues. Carbohydr Res 344: 1526-1532. https://doi.org/10.1016/j.carres.2009.02.029
  14. AOAC. 1990. Official Method of Analysis of AOAC Intl. 15thed. Method 900.02A, 955.04, 950.46 and 968.08. Association of Official Analytical Communities, Arlington, VA, USA.
  15. Folch J, Lees M, Solane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  16. Spies. 1957. Colorimetric procedure for determination of amino acid. In Methods in Enzymology III. Colowick SP, Kaplan NO, eds. Academic press, New York, NY, USA. p 467-477.
  17. Pyeun JH, Choi YJ, Kim JH, Cho KO. 1984. Postmortem changes of the protein and amino acid composition of muscle in the partially frozen prawn. Pendalus japonica. Bull Korean Fish Soc 17:280-290.
  18. Lowry OH, Rosebrough NJ, Farr AI, Randall RJ. 1951. Protein measurement with Folin phenol reagent. J Biol Chem 193: 256-275.
  19. Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J Agric Food Chem 59: 8401-8408. https://doi.org/10.1021/jf201953v
  20. Kato A, Matsuda T, Matsudomi NT, Kobayashi K. 1984. Determination of protein hydrophobicity using sodium dodecyl sulfate binding method. J Agric Food Chem 32: 284-288. https://doi.org/10.1021/jf00122a027
  21. Choi YJ, Hur S, Choi BD, Konno K, Park JW. 2009. Enzymatic hydrolysis of recovered protein from frozen small croaker and functional properties of its hydrolysates. J Food Sci 74: C17-C24. https://doi.org/10.1111/j.1750-3841.2008.00988.x
  22. Park EY, Murakami H, Mori T, Matsumura Y. 2005. Effects of protein and peptide addition on lipid oxidation in powder model system. J Agric Food Chem 53: 137-144. https://doi.org/10.1021/jf040221e
  23. Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK. 2005. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int 38: 175-182. https://doi.org/10.1016/j.foodres.2004.10.002
  24. Chen HM, Muramoto K, Yamauchi F, Nokihara K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Food Chem 44: 2619-2623. https://doi.org/10.1021/jf950833m
  25. Wanasundara PK, Ross AR, Amarowicz R, Ambrose SJ, Pegg RB, Shand PJ. 2002. Peptide with angiotensin I-converting enzyme (ACE) inhibiting activity from defibrinated hydrolyzed bovine plasma. J Agric Food Chem 50: 6981-6988. https://doi.org/10.1021/jf025592e
  26. Nam SH, Choi SP, Kang MY, Kozukue N, Friedman M. 2005. Antioxidative, antimutagenic, and anticarcinogenic activities of rice bran extracts in chemical and cell assays. J Agric Food Chem 53: 816-822. https://doi.org/10.1021/jf0490293
  27. Bhaskar N, Benila T, Radha C, Lalitha RG. 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour Technol 99: 335-343. https://doi.org/10.1016/j.biortech.2006.12.015
  28. Bhaskar N, Mahendrakar NS. 2008. Protein hydrolysate from visceral waste proteins of Catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresour Technol 99: 4105-4111. https://doi.org/10.1016/j.biortech.2007.09.006
  29. Chen DW, Zhang M. 2007. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis). Food Chem 104: 1200-1205. https://doi.org/10.1016/j.foodchem.2007.01.042
  30. Cheung IW, Liceaga AM, Li-Chan EC. 2009. Pacific hake (Merluccius productus) hydrolysates as cryoprotective agents in frozen pacific cod fillet mince. J Food Sci 74: C588-C594. https://doi.org/10.1111/j.1750-3841.2009.01307.x
  31. Bueno-Solano C, López-Cervanters J, Campas-Baypoli ON, Lauterio-Garcia R, Adan-Bante NP, Sanchez-Machado DI. 2009. Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chem 112: 671-675. https://doi.org/10.1016/j.foodchem.2008.06.029
  32. Bourseau P, Vandanjon L, Jaouen P, Chaplain-Derouiniot M, Masse A, Guerard F, Chabeaud A, Fouchereau-Peron M, Le Gal Y, Ravallec-Ple R, Berge JP, Picot L, Piot JM, Batista I, Thorkelsson G, Delannoy C, Jakobsen G, Johansson I. 2009. Fractionation of fish protein hydrolysates by ultrafiltration and nanofiltration: impact on peptidic populations. Desalination 244: 303-320. https://doi.org/10.1016/j.desal.2008.05.026
  33. Hall SE. 1996. Emulsions. In Methods of Testing Protein Functionality. Hall GM, ed. Blackie Academic & Professional, New York, NY, USA. p 153-185.
  34. van der Van C, Gruppen H, de Bont DB, Voragen AG. 2001. Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics. J Agric Food Chem 49: 5005-5012. https://doi.org/10.1021/jf010144c
  35. Bae YJ, Kim CH, Kim EJ, Go HJ, Kim IH, Park HY, Yoon HD, Chang YC, Hong YK, Park NG. 2004. Biological activity of the extracts of the eight Korean fish species. J Kor Fish Soc 37: 445-454.
  36. Samaranayaka AG, Kitts DD, Li-Chan EC. 2010. Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a Pacific hake (Merluccius productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. J Agric Food Chem 58: 1535-1542. https://doi.org/10.1021/jf9033199
  37. Klompong V, Benjakul S, Kantachote D, Shahidi F. 2007. Antioxidant activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 102: 1317-1327. https://doi.org/10.1016/j.foodchem.2006.07.016
  38. Bougatef A, Nedjar-Arroume N, Ravallec-Ple R, Leroy Y, Guillochon D, Barkia A, Nasri M. 2008. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sadinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem 111: 350-356. https://doi.org/10.1016/j.foodchem.2008.03.074
  39. Je JY, Lee KH, Lee MH, Ahn CB. 2009. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res Int 42: 1266-1272. https://doi.org/10.1016/j.foodres.2009.06.013

Cited by

  1. Anti-oxidative Effect of Oyster Hydrolysate on the Serum and Hepatic Homogenate in SD-rats vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.1940