DOI QR코드

DOI QR Code

고출력 LED 패키지의 Thermal Via 형성을 위한 Si 기판의 이방성 습식식각 공정

Anisotropic Wet-Etching Process of Si Substrate for Formation of Thermal Vias in High-Power LED Packages

  • 유병규 (홍익대학교 공과대학 신소재공학과) ;
  • 김민영 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Yu, B.K. (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, M.Y. (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, T.S. (Department of Materials Science and Engineering, Hongik University)
  • 투고 : 2012.12.18
  • 심사 : 2012.12.26
  • 발행 : 2012.12.30

초록

습식공정으로 thermal via용 SI 관통 via를 형성하기 위해 TMAH 용액의 농도와 온도에 따른 Si 기판의 이방성 습식식각 거동을 분석하였다. TMAH 용액의 온도를 $80^{\circ}C$로 유지한 경우, 5 wt%, 10 wt% 및 25 wt% 농도의 TMAH 용액은 각기 $0.76{\mu}m/min$, $0.75{\mu}m/min$$0.30{\mu}m/min$의 Si 식각속도를 나타내었다. 10 wt% TMAH 용액의 온도를 $20^{\circ}C$$50^{\circ}C$로 유지시에는 각기 $0.07{\mu}m/min$$0.23{\mu}m/min$으로 식각속도가 저하하였다. Si 기판의 양면에 동일한 형태의 식각 패턴을 형성하여 $80^{\circ}C$의 10 wt% TMAH 용액에 장입하고 5시간 식각하여 깊이 $500{\mu}m$의 관통 via hole을 형성하였다.

In order to fabricate through-Si-vias for thermal vias by using wet etching process, anisotropic etching behavior of Si substrate was investigated as functions of concentration and temperature of TMAH solution in this study. The etching rate of 5 wt%, 10 wt%, and 25 wt% TMAH solutions, of which temperature was maintained at $80^{\circ}C$, was $0.76{\mu}m/min$, $0.75{\mu}m/min$, and $0.30{\mu}m/min$, respectively. With changing the temperature of 10 wt% TMAH solution to $20^{\circ}C$ and $50^{\circ}C$, the etching rate was reduced to $0.067{\mu}m/min$ and $0.233{\mu}m/min$, respectively. Through-Si-vias of $500{\mu}m$-depth could be fabricated by etching a Si substrate for 5 hours in 10 wt% TMAH solution at $80^{\circ}C$ after forming same via-pattern on each side of the Si substrate.

키워드

참고문헌

  1. C. J. Weng, "Advanced Thermal Enhancement and Management of LED Packages", Inter. Commun. Heat Mass Transfer., 36, 245 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2008.11.015
  2. K. Y. Kim and K. K. Ham, "The Technical Trend of Heat Dissipation for High Power LED Flood Light", Proc. KIIEE Spring Conference, Yongpyung, 214, Korean Institute of Illuminating and Electrical Installation Engineers (2009).
  3. S. J. Lee, J. S. Lee and Y. J. Kim, "Synthesis and Optical Properties of M-Si(Al)-O-N (M: Sr, Ca) Phosphors for White Light Emitting Diodes", J. Microelectron. Packag. Soc., 19(2), 41 (2012). https://doi.org/10.6117/kmeps.2012.19.2.041
  4. J. Hu, L. Yang and M. W. Shin, "Electrical, Optical and Thermal Degradation of High Power GaN/InGaN Light-Emitting Diodes", J. Phys. D: Appl. Phys. 41, 1 (2008). https://doi.org/10.1051/epjap:2007176
  5. S. H. Kim, S. I. Lee, J. K. Yang and D. H. Park, "Analysis of Thermal Properties in LED Package by Via-Hole and Dimension of FR4 PCB", J. KIEEME, 24, 234 (2011). https://doi.org/10.4313/JKEM.2011.24.3.234
  6. S. Chan and J. S. Jang, "Accelerated Degradation Stress of High Power Phosphor Converted LED Package", J. Microelectron. Packag. Soc., 17(4), 19 (2010).
  7. J. Park, M. W. Shin and C. C. Lee, "Measurement of Temperature Profiles on Visible Light-Emitting Diodes by Use of a Nematic Liquid Crystal and an Infrared Laser", Optics Lett., 29, 2656 (2004). https://doi.org/10.1364/OL.29.002656
  8. H. W. Shin, H. S. Lee, J. O. Bang, S. H. Yoo, S. B. Jung and K. D. Kim, "Variation of Thermal Resistance of LED Module Embedded by Thermal Via", J. Microelectron. Packag. Soc., 17(4), 95 (2010).
  9. M. H. Lee, T. J. Lee, H. J. Lee and Y. J. Kim, "Design and Fabrication of Metal PCB Based on the Patterned Anodizing for Improving Thermal Dissipation of LED Lighting", Proc. 5th Int. Conference on Microsys. Pack. Assembly Circuits Technol., 1, Taipei, IEEE (2010).
  10. J. Petroski, "Spacing of High-Brightness LEDs on Metal Substrate PCB's for Proper Thermal Performance", Proc. Intersoc. Conference Thermal & Thermomech. Phenomena Electron. Systems, 507, Las Vegas, IEEE (2004).
  11. A. Christensen and S. Graham, "Thermal Effects in Packaging High Power Light Emitting Diode Arrays", Appl. Thermal Engineer., 29, 364 (2009). https://doi.org/10.1016/j.applthermaleng.2008.03.019
  12. M. Arik, C. Becker, S. Weaver and J. Petroski, "Thermal Management of LEDs: Package to System", Proc. 3th Int. Conference Solid State Lighting, 64, San Diego, International Society for Optics and Photonics (2004).
  13. W. K. Jeung, S. H. Shin, S. Y. Hong, S. M. Choi, S. Yi, Y. B. Yoon, H. J. Kim, S. J. Lee and K. Y. Park, "Silicon-Based, Multi-Chip LED Package", Proc. 57th Electron. Comp. Technol. Conference(ECTC), Reno, 722, IEEE CPMT (2007).
  14. L. Yang, S. Jang, W. J. Hwang and M. W. Shin, "Thermal Analysis of High Power GaN-Based LEDs with Ceramic Package", Thermochimica Acta, 455, 95 (2007). https://doi.org/10.1016/j.tca.2006.11.019
  15. K. S. Kim, Y. C. Lee, J. H. Ahn, J. Y. Song, C. D. Yoo and S. B. Jung, "Effect of Process Parameters on TSV Formation Using Deep Reactive Ion Etching", Korean J. Met. Mater., 48, 1028 (2010). https://doi.org/10.3365/KJMM.2010.48.11.1028
  16. Y. M. Jung and Y. C. Kim, "Fabrication of a (100) Silicon Master Using Anisotropic Wet Etching for Embossing", J. Korean Ceram. Soc., 42, 645 (2005). https://doi.org/10.4191/KCERS.2005.42.10.645
  17. Y. Cao, W. Ning and L. Luo, "Wafer-Level Package with Simultaneous TSV Connection and Cavity Hermetic Sealing by Solder Bonding for MEMS Device", IEEE Trans. Electron. Pack. Manuf., 32, 125 (2009). https://doi.org/10.1109/TEPM.2009.2021766
  18. C. R. Yang, P. Y. Chen, C. H. Yang, Y. C. Chiou and R. T. Lee, "Effects of Various Ion-Typed Surfactants on Silicon Anisotropic Etching Properties in KOH and TMAH Solutions", Sens. Actuators A, 119, 271 (2005). https://doi.org/10.1016/j.sna.2004.09.017
  19. K. Biswas, S. Das, D. K. Maurya, S. Kal and S. K. Lahiri, "Bulk Micromachining of Silicon in TMAH-Based Etchants for Aluminium Passivation and Smooth Surface", Microelectron. J., 37, 321 (2006). https://doi.org/10.1016/j.mejo.2005.05.013
  20. P. H. Chen, H. Y. Peng, C. M. Hsieh and M. K. Chyu, "The Characteristic Behavior of TMAH Water Solution for Anisotropic Etching on Both Silicon Substrate and SiO2 Layer", Sens. Actuators A, 93, 132 (2001). https://doi.org/10.1016/S0924-4247(01)00639-2
  21. I. Zubel and M. Kramkowska, "The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (100) Si Surface Etched in KOH and TMAH Solutions", Sens. Actuators A, 93, 138 (2001). https://doi.org/10.1016/S0924-4247(01)00648-3
  22. H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel, "Anisotropic Etching of Crystalline Silicon in Alkaline Solutions", J. Electrochem. Soc., 137, 3626 (1990). https://doi.org/10.1149/1.2086278
  23. I. Zubel, I. Barycka, K. Kotowska and M. Kramkowska, "Silicon Anisotropic Etching in Alkaline Solutions IV: The Effect of Organic and Inorganic Agents on Silicon Anisotropic Etching Process", Sens. Actuators A, 87, 163 (2001). https://doi.org/10.1016/S0924-4247(00)00481-7
  24. L. M. Landsberger, S. Naseh, M. Kahrizi and M. Paranjape, "On Hillocks Generated during Anisotropic Etching of Si in TMAH", J. Microelectromech. Sys., 5, 106 (1996). https://doi.org/10.1109/84.506198

피인용 문헌

  1. Characterization of GaN epitaxial layer grown on nano-patterned Si(111) substrate using Pt metal-mask vol.21, pp.3, 2014, https://doi.org/10.6117/kmeps.2014.21.3.067
  2. Cu Through-Via Formation using Open Via-hole Filling with Electrodeposition vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.117
  3. The Effects of Cu TSV on the Thermal Conduction in 3D Stacked IC vol.21, pp.3, 2014, https://doi.org/10.6117/kmeps.2014.21.3.063