References
- Sawyer DT, Valentine JS. How super is superoxide? Acc. Chem. Res. 1981;14:393-400. https://doi.org/10.1021/ar00072a005
- Staehelin J, Hoigne J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol. 1982;16:676-681. https://doi.org/10.1021/es00104a009
-
Bielski BH, Cabelli DE, Arudi RL. Reactivity of
$HO_{2}/O_{2}$ - radical in aqueous solution. J. Phys. Chem. Ref. Data 1985;14:1041- 1100. https://doi.org/10.1063/1.555739 - von Sonntag C, Dowideit P, Fang X, et al. The fate of peroxyl radicals in aqueous solution. Water Sci. Technol. 1997;35:9- 15.
-
Kwon BG, Lee JH. A kinetic method for
$HO_{2}/O_{2}$ - determination in advanced oxidation processes. Anal. Chem. 2004;76:6359-6364. https://doi.org/10.1021/ac0493828 - Kwon BG, Kim E, Lee JH. Pentachlorophenol decomposition by electron beam process enhanced in the presence of Fe(III)-EDTA. Chemosphere 2009;74:1335-1339. https://doi.org/10.1016/j.chemosphere.2008.11.049
-
Kwon BG, Yoon J. Experimental evidence of the mobility of hydroperoxyl/superoxide anion radicals from the illuminated
$TiO_{2}$ interface into the aqueous phase. Bull. Korean Chem. Soc. 2009;30:667-670. https://doi.org/10.5012/bkcs.2009.30.3.667 -
Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (.OH/.
$O^{-}$ in aqueous solution. J. Phys. Chem. Ref. Data 1988;17:513-886. https://doi.org/10.1063/1.555805 - Stefan MI, Hoy AR, Bolton JR. Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environ. Sci. Technol. 1996;30:2382-2390. https://doi.org/10.1021/es950866i
- Goldstein S, Lind J, Merenyi G. Chemistry of peroxynitrites as compared to peroxynitrates. Chem. Rev. 2005;105:2457-2470. https://doi.org/10.1021/cr0307087
- Kwon BG, Kim JO, Namkung KC. The formation of reactive species having hydroxyl radical-like reactivity from UV photolysis of N-nitrosodimethylamine (NDMA): kinetics and mechanism. Sci. Total Environ. 2012;437:237-244. https://doi.org/10.1016/j.scitotenv.2012.08.016
- Fridovich I. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem. 1970;245:4053-4057.
- Fridovich I. Superoxide radical and superoxide dismutase. Acc. Chem. Res. 1972;5:321-326. https://doi.org/10.1021/ar50058a001
- Butler J, Halliwell B. Reaction of iron-EDTA chelates with the superoxide radical. Arch. Biochem. Biophys. 1982;218:174- 178. https://doi.org/10.1016/0003-9861(82)90333-2
- Halliwell B. Antioxidant characterization: methodology and mechanism. Biochem. Pharmacol. 1995;49:1341-1348. https://doi.org/10.1016/0006-2952(95)00088-H
- Bhattacharya D, Maji S, Pal K, Sarkar S. Formation of superoxide anion on aerial oxidation of Cu(II)-porphyrinogen in the synthesis of tetrakis(cyclohexyl)porphyrinogenCu(III) anion. Inorg. Chem. 2008;47:5036-5038. https://doi.org/10.1021/ic800282j
- McDowell MS, Bakac A, Espenson JH. A convenient route to superoxide ion in aqueous solution. Inorg. Chem. 1983;22:847-848. https://doi.org/10.1021/ic00147a033
- Schwarz HA. Free radicals generated by radiolysis of aqueous solutions. J. Chem. Educ. 1981;58:101-105. https://doi.org/10.1021/ed058p101
- Okado-Matsumoto A, Fridovich I. Assay of superoxide dismutase: cautions relevant to the use of cytochrome c, a sulfonated tetrazolium, and cyanide. Anal. Biochem. 2001;298:337- 342. https://doi.org/10.1006/abio.2001.5385
-
Flyunt R, Leitzke A, Mark G, et al. Determination of .OH,
$O_{2}^{.-}$ , and hydroperoxide yields in ozone reactions in aqueous solution. J. Phys. Chem. B 2003;107:7242-7253. https://doi.org/10.1021/jp022455b - Merenyi G, Lind JS. Role of a peroxide intermediate in the chemiluminescence of luminal: a mechanistic study. J. Am. Chem. Soc. 1980;102:5830-5835. https://doi.org/10.1021/ja00538a022
-
Nosaka Y, Yamashita Y, Fukuyama H. Application of chemiluminescent probe to monitoring superoxide radicals and hydrogen peroxide in
$TiO_{2}$ photocatalysis. J. Phys. Chem. B 1997;101:5822-5827. https://doi.org/10.1021/jp970400h - Naguib YM. A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal. Biochem. 1998;265:290-298. https://doi.org/10.1006/abio.1998.2931
- Armstrong WA, Black BA, Grant DW. The radiolysis of aqueous calcium benzoate and benzoic acid solutions. J. Phys. Chem. 1960;64:1415-1419. https://doi.org/10.1021/j100839a013
- Klein GW, Bhatia K, Madhavan V, Schuler RH. Reaction of hydroxyl radicals with benzoic acid: isomer distribution in the radical intermediates. J. Phys. Chem. 1975;79:1767-1774. https://doi.org/10.1021/j100584a005
- Oturan MA, Pinson J. Hydroxylation by electrochemically generated OH radicals. Mono- and polyhydroxylation of benzoic acid: products and isomer distribution. J. Phys. Chem. 1995;99:13948-13954. https://doi.org/10.1021/j100038a029
- Mason TJ, Lorimer JP, Bates DM, Zhao Y. Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason. Sonochem. 1994;1:S91-S95. https://doi.org/10.1016/1350-4177(94)90004-3
-
Ishibashi K, Fujishima A, Watanabe T, Hashimoto K. Quantum yields of active oxidative species formed on
$TiO_{2}$ photocatalyst. J. Photochem. Photobiol. A Chem. 2000;134:139-142. https://doi.org/10.1016/S1010-6030(00)00264-1 - Fang X, Mark G, von Sonntag C. OH radical formation by ultrasound in aqueous solutions. Part I: the chemistry underlying the terephthalate dosimeter. Ultrason. Sonochem. 1996;3:57-63. https://doi.org/10.1016/1350-4177(95)00032-1
-
Czapski G, Bielski BH. The formation and decay of
$H_{2}O_{3}$ and$HO_{2}$ in electron-irradiated aqueous solutions. J. Phys. Chem. 1963;67:2180-2184. https://doi.org/10.1021/j100804a050 -
Schwartz SE. Gas- and aqueous-phase chemistry of
$HO_{2}$ in liquid water clouds. J. Geophys. Res. 1984;89:11589-11598. https://doi.org/10.1029/JD089iD07p11589 - Sander R. Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry. Mainz: Max-Planck Institute of Chemistry; 1999.
- Seinfeld JH, Pandis SN. Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley; 1998.
Cited by
- Removal of tylosin from aqueous solution by UV/nano Ag/S2O 8 2− process : Influence of operational parameters and kinetic study vol.31, pp.9, 2014, https://doi.org/10.1007/s11814-014-0083-6
- and Degradation of Phenol: Effects of Nickel Doping and Electrolytes vol.48, pp.5, 2014, https://doi.org/10.1021/es404688z
- Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species vol.90, pp.5, 2015, https://doi.org/10.1002/jctb.4634
- Nonnegligible Generation of Hydroxyl Radicals from UVC Photolysis of Aqueous Nitrous Oxide vol.52, pp.17, 2012, https://doi.org/10.1021/acs.est.8b02145
- Solar photo-degradation of aniline with rGO/TiO2 composites and persulfate vol.697, pp.None, 2019, https://doi.org/10.1016/j.scitotenv.2019.134086
- A New Mechanism of the Selective Photodegradation of Antibiotics in the Catalytic System Containing TiO2 and the Inorganic Cations vol.22, pp.16, 2012, https://doi.org/10.3390/ijms22168696