DOI QR코드

DOI QR Code

Fumonisin Production by Field Isolates of the Gibberella fujikuroi Species Complex and Fusarium commune Obtained from Rice and Corn in Korea

우리나라 벼와 옥수수로부터 분리한 Gibberella fujikuroi 종복합체와 Fusarium commune 소속 균주의 푸모니신 생성능

  • Lee, Soo-Hyung (Microbial Safety Team, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Ji-Hye (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Son, Seung-Wan (Microbial Safety Team, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Theresa (Microbial Safety Team, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yun, Sung-Hwan (Department of Medical Biotechnology, Soonchunhyang University)
  • 이수형 (농촌진흥청 국립농업과학원 유해생물팀) ;
  • 김지혜 (순천향대학교 의료생명공학과) ;
  • 손승완 (농촌진흥청 국립농업과학원 유해생물팀) ;
  • 이데레사 (농촌진흥청 국립농업과학원 유해생물팀) ;
  • 윤성환 (순천향대학교 의료생명공학과)
  • Received : 2012.11.02
  • Accepted : 2012.12.05
  • Published : 2012.12.31

Abstract

Gibberellea fujikuroi species (Gf) complex comprises at least 15 species, most of which not only causes serious plant diseases, but also produces mycotoxins including fumonisins. Here, we focused on the abilities of the field isolates belonging to the Gf complex associated with rice and corn, respectively in Korea to produce fumonisin, all of which were confirmed to carry FUM1, the polyketide synthase gene essential for fumonisin biosynthesis. A total of 88 Gf complex isolates (55 F. fujikuroi, 10 F. verticillioides, 20 F. proliferatum, 2 F. subglutinans, and 1 F. concentricum), and 4 isolates of F. commune, which is a non-member of Gf complex, were grown on rice substrate and determined for their production levels of fumonisins by a HPLC method. Most isolates of F. verticillioides and F. proliferatum, regardless of host origins, produced fumonisin $B_1$ and $B_2$ at diverse ranges of levels ($0.5-2,686.4{\mu}g/g$, and $0.7-1,497.6{\mu}g/g$, respectively). In contrast, all the isolates of F. fujikuroi and other Fusarium species examined produced no fumonisins or only trace amounts ($<10{\mu}g/g$) of fumonisins. Interestingly, the frequencies of relatively high fumonisin-producers among the F. proliferatum and F. fujikuroi isolates derived from corn were higher than those among the fungal isolates from rice. In addition, it is a first report demonstrating the ability of the FUM1-carrying F. commune isolates from rice to produce fumonisins.

Gibberellea fujikuroi (Gf) 종복합체는 최소 15개의 종으로 구성되어 있으며, 대부분 식물에 병을 일으킬 뿐 아니라 푸모니신과 같은 곰팡이독소를 생성한다. 본 연구에서는 우리나라 벼와 옥수수로부터 분리한 Gf 종복합체 소속 야생형 균주의 푸모니신 생성능을 검정하였다. 이들 분석대상 균주는 모두 푸모니신 생합성에 필수적인 polyketide synthase 유전자 FUM1을 가지고 있는 것으로 확인되었다. 총 88주의 Gf 종복합체 소속 균주(55 F. fujikuroi, 10 F. verticillioides, 20 F. proliferatum, 2 F. subglutinans, 1 F. concentricum)와 Gf 종복합체의 근연종인 4주의 F. commune를 쌀 배지에 배양한 후 각 균주의 푸모니신 생성 농도를 HPLC 방법으로 측정하였다. 대부분의 F. verticillioides과 F. proliferatum 균주는 기주 식물에 관계없이 푸모니신 $B_1$($0.5-2,686.4{\mu}g/g$)과 $B_2$($0.7-1,497.6{\mu}g/g$)를 다양한 범위 내에서 생성하였다. 반면 모든 F. fujikuroi을 비롯한 다른 Fusarium spp.의 균주로부터는 푸모니신이 검출되지 않았거나 $10{\mu}g/g$ 이하 수준의 미량만 검출되었다. 흥미롭게도 F. proliferatum과 F. fujikuroi의 경우, 옥수수 유래 균주 집단에서 벼 유래 균주 집단에 비해 상대적으로 고농도 푸모니신 생성 균주의 비율이 높았다. 한편, FUM1 유전자를 함유하고 있는 F. commune의 푸모니신 생성능은 본 연구를 통해 처음 보고된다.

Keywords

References

  1. Alberts, J. F., Gelderblom, W. C., Thiel, P. G., Marasas, W. F., Van Schalkwyk, D. J. and Behrend, Y. 1990. Effects of temperature and incubation period on production of fumonisin B1 by Fusarium moniliforme. Appl. Environ. Microbiol. 56: 1729-1733.
  2. Castella, G., Bragulat, M. R. and Cabanes, F. J. 1999. Fumonisin production by Fusarium species isolated from cereals and feeds in Spain. J. Food Prot. 62: 811-813.
  3. Choi, H. W., Kim, J. M., Hong, S. K., Kim, W. G., Chun, S. C. and Yu, S. H. 2009. Mating types and optimum culture conditions for sexual state formation of Fusarium fujikuroi isolates. Mycobiology 37: 247-250. https://doi.org/10.4489/MYCO.2009.37.4.247
  4. Chung, S. H. and Kim, Y. B. 1995. Natural occurrence of fumonisin $B_{1}$ in Korean corn and rough rice. Food Sci. Biotechnol. 4: 212-216.
  5. Desjardins, A. E., Manandhar, H. K., Plattner, R. D., Manandhar, G. G., Poling, S. M. and Maragos, C. M. 2000. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl. Environ. Microbiol. 66: 1020-1025. https://doi.org/10.1128/AEM.66.3.1020-1025.2000
  6. Dissanayake, M. L., Tanaka, S. and Ito, S. 2009. Fumonisin $B_{1}$production by Fusarium proliferatum strains isolated from Allium fistulosum plants and seeds in Japan. Lett. Appl. Microbiol. 48: 598-604. https://doi.org/10.1111/j.1472-765X.2009.02576.x
  7. Fotso, J., Leslie, J. F. and Smith, J. S. 2002. Production of beauvericin, moniliformin, fusaproliferin, and fumonisins $B_{1},\;B_{2}$, and $B_{3}$ by fifteen ex-type strains of Fusarium species. Appl. Environ. Microbiol. 68: 5195-5197. https://doi.org/10.1128/AEM.68.10.5195-5197.2002
  8. Ghiasian, S. A., Rezayat, S. M., Kord-Bacheh, P., Maghsood, A. H., Yazdanpanah, H., Shephard, G. S., van der Westhuizen, L., Vismer, H. F. and Marasas, W. F. 2005. Fumonisin production by Fusarium species isolated from freshly harvested corn in Iran. Mycopathologia 159: 31-40. https://doi.org/10.1007/s11046-004-3899-5
  9. Hinojo, M. J., Medina, A., Valle-Algarra, F. M., Gimeno-Adelantado, J. V., Jimenez, M. and Mateo, R. 2006. Fumonisin production in rice cultures of Fusarium verticillioides under different incubation conditions using an optimized analytical method. Food Microbiol. 23: 119-127. https://doi.org/10.1016/j.fm.2005.03.006
  10. Jurado, M., Marin, P., Callejas, C., Moretti, A., Vazquez, C. and Gonzalez-Jaen, M. T. 2010. Genetic variability and fumonisin production by Fusarium proliferatum. Food Microbiol. 27: 50-57. https://doi.org/10.1016/j.fm.2009.08.001
  11. Jurjevic, Z., Wilson, D. M., Wilson, J. P., Geiser, D. M., Juba, J. H., Mubatanhema, W., Widstrom, N. W. and Rains, G. C. 2005. Fusarium species of the Gibberella fujikuroi complex and fumonisin contamination of pearl millet and corn in Georgia, USA. Mycopathologia 159: 401-406. https://doi.org/10.1007/s11046-004-1050-2
  12. Kang, M. R., Kim, J. H., Lee, S. H., Ryu, J. G., Lee, T. and Yun, S. H. 2011. Detection of Fusarium verticillioides contaminated in corn using a new species-specific primer. Res. Plant Dis. 17: 369-375. (In Korean) https://doi.org/10.5423/RPD.2011.17.3.369
  13. Kim, E. K., Kim, Y. B., Shon, D. H., Ryu, D. and Chung, S. H. 1998. Natural occurrence of fumonisin $B_{1}$ in Korean rice and its processed foods by enzyme-linked immunosorbent assay. Food Sci. Biotechnol. 7: 221-224.
  14. Kim, J. H., Kang, M. R., Kim, H. K., Lee, S. H., Lee, T. and Yun, S. H. 2012. Population structure of the Gibberella fujikuroi species complex associated with rice and corn in Korea. Plant Pathology J. 28: 357-363. https://doi.org/10.5423/PPJ.OA.09.2012.0134
  15. Leslie, J. F., Anderson, L. L., Bowden, R. L. and Lee, Y. W. 2007. Inter- and intra-specific genetic variation in Fusarium. Int. J. Food Microbiol. 119: 25-32. https://doi.org/10.1016/j.ijfoodmicro.2007.07.059
  16. Leslie, J. F., Pearson, C. A. S., Nelson, P. E. and Toussoun, T. A. 1990. Fusarium spp. from corn, sorghum, and soybean fields in the central and eastern United States. Phytopathology 80: 343-350. https://doi.org/10.1094/Phyto-80-343
  17. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium lab manual. Blackwell, Ames, IA, USA.
  18. Lim, S. H., Yun, S. H. and Lee, Y. W. 2001. Mating behavior, mycotoxin production, and vegetative compatibility of Gibberella fujikuroi species complex from sorghum in Korea. Plant Pathology J. 17: 276-280.
  19. Marasas, W. F. 2001. Discovery and occurrence of the fumonisins: a historical perspective. Environ. Health Perspect. 109 Suppl 2: 239-243. https://doi.org/10.1289/ehp.01109s2239
  20. Marasas, W. F., Kellerman, T. S., Gelderblom, W. C., Coetzer, J. A., Thiel, P. G. and van der Lugt, J. J. 1988. Leukoencephalomalacia in a horse induced by fumonisin $B_{1}$ isolated from Fusarium moniliforme. Onderstepoort J. Vet. Res. 55: 197-203.
  21. Munkvold, G. P. and Desjardins, A. E. 1997. Fumonisins in maize. Can we reduce their occurrence? Plant Dis. 81: 556-565. https://doi.org/10.1094/PDIS.1997.81.6.556
  22. Nelson, P. E., Desjardins, A. E. and Plattner, R. D. 1993. Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu. Rev. Phytopathol. 31: 233-252. https://doi.org/10.1146/annurev.py.31.090193.001313
  23. O'Donnell, K., Cigelnik, E. and Nirenberg, H. I. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465-493. https://doi.org/10.2307/3761407
  24. Park, S. Y., Seo, J. A., Lee, Y. W. and Lee, Y. H. 2001. Population genetic analyses of Gibberella fujikuroi isolates from maize in Korea. Plant Pathology J. 17: 281-289.
  25. Proctor, R. H., Desjardins, A. E., Plattner, R. D. and Hohn, T. M. 1999. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet. Biol. 27: 100-112. https://doi.org/10.1006/fgbi.1999.1141
  26. Proctor, R. H., Plattner, R. D., Brown, D. W., Seo, J. A. and Lee, Y. W. 2004. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol. Res. 108: 815-822. https://doi.org/10.1017/S0953756204000577
  27. Rheeder, J. P., Marasas, W. F. and Vismer, H. F. 2002. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 68: 2101-2105. https://doi.org/10.1128/AEM.68.5.2101-2105.2002
  28. Ross, P. F., Nelson, P. E., Richard, J. L., Osweiler, G. D., Rice, L. G., Plattner, R. D. and Wilson, T. M. 1990. Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Appl. Environ. Microbiol. 56: 3225-3226.
  29. Sanchez-Rangel, D., SanJuan-Badillo, A. and Plasencia, J. 2005. Fumonisin production by Fusarium verticillioides strains isolated from maize in Mexico and development of a polymerase chain reaction to detect potential toxigenic strains in grains. J. Agric. Food Chem. 53: 8565-8571. https://doi.org/10.1021/jf0514827
  30. Seo, J. A. and Lee, Y. W. 1999. Natural occurrence of the C series of fumonisins in moldy corn. Appl. Environ. Microbiol. 65: 1331-1334.
  31. Son, S. W., Nam, Y. J., Lee, S. H., Lee, S. M., Lee, S., Kim, M., Lee, T., Yun, J. C. and Ryu, J. G. 2011. Toxigenic fungal contaminants in the 2009-harvested rice and its millingbyproducts samples collected from rice processing complexes in Korea. Res.Plant Dis. 17: 280-287. (In Korean) https://doi.org/10.5423/RPD.2011.17.3.280
  32. Sydenham, E. W., Shephard, G. S., Thiel, P. G., Marasas, W. F. O. and Stockenstrom, S. 1991. Fumonisin contamination of commercial corn-based human foodstuffs. J. Agric. Food Chem. 39: 1900-1903.
  33. Wulff, E. G., Sorensen, J. L., Lubeck, M., Nielsen, K. F., Thrane, U. and Torp, J. 2010. Fusarium spp. associated with rice bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environ. Microbiol. 12: 649-657. https://doi.org/10.1111/j.1462-2920.2009.02105.x
  34. Yoshizawa, T., Yamashita, A. and Luo, Y. 1994. Fumonisin occurrence in corn from high- and low-risk areas for human esophageal cancer in China. Appl. Environ. Microbiol. 60: 1626-1629.

Cited by

  1. Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles vol.13, pp.10, 2017, https://doi.org/10.1371/journal.ppat.1006670