References
- M. Auslander and M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, No. 94 American Mathematical Society, Providence, R.I. 1969.
- D. Bennis, Rings over which the class of Gorenstein at modules is closed under extensions, Comm. Algebra, 37 (2009), no. 3, 855-868. https://doi.org/10.1080/00927870802271862
- R. F. Damiano, Coflat rings and modules, Pacific J. Math. 81 (1979), no. 2, 349-369. https://doi.org/10.2140/pjm.1979.81.349
- N. Q. Ding and J. L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78 (1993), no. 2, 165-177. https://doi.org/10.1007/BF02599307
- N. Q. Ding and J. L. Chen, The homological dimensions of simple modules, Bull. Aust. Math. Soc. 48 (1993), no. 2, 265-274. https://doi.org/10.1017/S0004972700015690
- N. Q. Ding and J. L. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. https://doi.org/10.1080/00927879608825724
- N. Q. Ding, Y. L. Li, and L. X. Mao, Strongly Gorenstein at modules, J. Aust. Math. Soc. 86 (2009), no. 3, 323-338. https://doi.org/10.1017/S1446788708000761
- N. Q. Ding and L. X. Mao, Relative FP-projective modules, Comm. Algebra 33 (2005), no. 5, 1587-1602. https://doi.org/10.1081/AGB-200061047
- E. E. Enochs, Injective and at covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209. https://doi.org/10.1007/BF02760849
- E. E. Enochs, S. Estrada, and B. Torrecillas, Gorenstein flat covers and gorenstein cotorsion modules over integral group rings, Algebr. Represent. Theory 8 (2005), no. 4, 525{539. https://doi.org/10.1007/s10468-005-0339-2
- E. E. Enochs and Z. Y. Huang, Injective envelopes and (Gorenstein) at covers, in press.
- E. E. Enochs and O. M. G. Jenda, Balanced functors applied to modules, J. Algebra 92 (1985), 303-310. https://doi.org/10.1016/0021-8693(85)90122-X
- E. E. Enochs and O. M. G. Jenda, Gorenstein balance of Hom and tensor, Tsukuba J. Math. 19 (1995), no. 1, 1-13. https://doi.org/10.21099/tkbjm/1496162796
- E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics no. 30, Walter De Gruyter, New York, 2000.
- E. E. Enochs, O. M. G. Jenda, and J. A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (2004), no. 1, 46-62. https://doi.org/10.7146/math.scand.a-14429
- E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 10 (1993), no. 1, 1-9.
- J. Gillespie, Model structures on modules over Ding-Chen rings, Homology, Homotopy Appl. 12 (2010), no. 1, 61-73. https://doi.org/10.4310/HHA.2010.v12.n1.a6
- H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
- H. Holm, Gorenstein derived functors, Proc. Amer. Math. Soc. 132 (2004), no. 7, 1913-1923. https://doi.org/10.1090/S0002-9939-04-07317-4
- M. Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z. 241 (2002), no. 3, 553-592. https://doi.org/10.1007/s00209-002-0431-9
- Y. Iwanaga, On rings with nite self-injective dimension, Comm. Algebra 7 (1979), no. 4, 393-414. https://doi.org/10.1080/00927877908822356
- Y. Iwanaga, On rings with finite self-injective dimension II, Tsukuba J. Math. 4 (1980), no. 1, 107-113. https://doi.org/10.21099/tkbjm/1496158797
- L. X. Mao and N. Q. Ding, Envelopes and covers by modules of finite FP-injective and flat dimensions, Comm. Algebra 35 (2007), no. 3, 833-849. https://doi.org/10.1080/00927870601115757
- L. X. Mao and N. Q. Ding, Gorenstein FP-injective and Gorenstein at modules, J. Algebra Appl. 7 (2008), no. 4, 491-506. https://doi.org/10.1142/S0219498808002953
- W. L. Song and Z. Y. Huang, Gorenstein atness and injectivity over Gorenstein rings, Sci. China Ser. A 51 (2008), no. 2, 215-218. https://doi.org/10.1007/s11425-008-0023-1
- B. Stenstrom, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), no. 2, 323-329. https://doi.org/10.1112/jlms/s2-2.2.323
- J. Z. Xu, Flat Covers of Modules, Lecture Notes in Math, 1634, 1996.
- G. Yang and Z. K. Liu, Gorenstein flat covers over GF-closed rings, Comm. Algebra, to appear.
Cited by
- Relative left derived functors of tensor product functors vol.32, pp.7, 2016, https://doi.org/10.1007/s10114-016-5245-5
- Singularity categories with respect to Ding projective modules vol.33, pp.6, 2017, https://doi.org/10.1007/s10114-017-6209-0
- On Ding homological dimensions vol.30, pp.4, 2015, https://doi.org/10.1007/s11766-015-3376-6
- DERIVED CATEGORIES WITH RESPECT TO DING MODULES vol.12, pp.06, 2013, https://doi.org/10.1142/S0219498813500217
- RELATIVE AND TATE COHOMOLOGY OF DING MODULES AND COMPLEXES vol.52, pp.4, 2015, https://doi.org/10.4134/JKMS.2015.52.4.821
- On Right Orthogonal Classes and Cohomology Over Ding–Chen Rings vol.40, pp.2, 2017, https://doi.org/10.1007/s40840-017-0461-4