DOI QR코드

DOI QR Code

Transient Creep Analysis in Indentation Tests

압입시험의 천이 크리프 해석

  • Received : 2011.09.15
  • Accepted : 2011.10.25
  • Published : 2012.01.01

Abstract

The indentation test, which is one of the testing methods for evaluating the mechanical properties of materials, can be applied to the evaluation of creep properties. Many studies related to the indentation creep test, however, have just focused on the characteristics of the steady-state creep, so there are wide discrepancies between the uniaxial test and the indentation test. To obtain accurate creep properties, it is therefore important to consider the effects of transient creep. In the present work, the Ogbonna et al.'s work on the spherical indentation test including the transient creep was expanded and applied to the conical indentation creep test. The characteristics of the transient creep were analyzed via finite element simulations and compared with those obtained through spherical indentation. Other effects, such as elastic strain, indenter shape, contact area, and representative strain, which have not been considered properly in prior studies on the creep test, are also discussed.

재료시험기법 중 하나인 압입시험은 크리프 특성 분석에 이용될 수 있다. 그러나 많은 기존 연구들이 정상상태의 크리프 특성만을 이용하고 있기 때문에, 단축시험과 압입시험 사이에는 상당한 차이가 발생한다. 따라서 정확한 크리프 평가를 위해서는 천이 크리프 특성을 고려하여야 한다. 본 연구에서는 Ogbonna 등(14)의 구형 압입자를 이용한 천이 크리프 해석을 확장, 자기 유사성을 갖는 원뿔형 압입자에 적용했다. 천이 크리프 특성을 유한요소해석을 통해 분석하여 정리하였으며, 구형 및 원뿔형 압입시험의 천이 특성을 비교했다. 또한 재료의 탄성변형률, 압입자 형상, 압입접촉면적, 대표 변형률 등 기존 평가법들에서 정량적으로 잘 고려되지 못하고 있는 부분들을 살펴보고 그 해결방안을 제시했다.

Keywords

References

  1. Oliver, W. C., Pharr, G. M., 1992, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments," J. Mater. Res., Vol. 7, pp. 1564-1583. https://doi.org/10.1557/JMR.1992.1564
  2. Pharr, G. M., 1998, "Measurement of Mechanical Properties by Ultra-low Load Indentation," Mater. Sci. Eng.(A), Vol. 253, pp. 151-159. https://doi.org/10.1016/S0921-5093(98)00724-2
  3. Lee, H., Kim, D. W., Lee, J. H. and Nahm, S. H., 2004, "Software and Hardware Development of Micro-indenter for Material Property Evaluation of Hyper-elastic Rubber," Trans. of the KSME(A), Vol. 28, No. 6, pp. 816-825. https://doi.org/10.3795/KSME-A.2004.28.6.816
  4. Lee, H., Lee, J. H. and Pharr, G. M., 2005, "A Numerical Approach to Spherical Indentation Technique for Material Property Evaluation," J. Mech. Phys. Solids, Vol. 53, pp. 2037-2069. https://doi.org/10.1016/j.jmps.2005.04.007
  5. Lee, J. H., Kim, T.H., and Lee, H., 2010, "A Study on Robust Indentation Techniques to Evaluate Elastic- Plastic Properties of Metals," Int. J. Solids Struct. Vol. 47, pp. 647-664. https://doi.org/10.1016/j.ijsolstr.2009.11.003
  6. Suresh, S. and Giannakopoulos, A. E., 1998, "A New Method for Estimating Residual Stresses by Instrumented Sharp Indentation," Acta Mater., Vol. 46, pp. 5755-5767. https://doi.org/10.1016/S1359-6454(98)00226-2
  7. Lee, J. H., Lee, H., Hyun, H. C. and Kim, M., 2010, "Numerical Approaches and Experimental Verification of the Conical Indentation Techniques for Residual Stress Evaluation," J. Mater. Res., Vol. 25, pp. 2212-2223. https://doi.org/10.1557/jmr.2010.0275
  8. Hyun, H. C., Kim, M., Lee, J. H. and Lee, H., 2011, "A Dual Conical Indentation Technique Based on FEA Solutions for Property Evaluation," Mech. Mater., Vol. 43 (6), pp. 313-331. https://doi.org/10.1016/j.mechmat.2011.03.003
  9. Lawn, B. R., Evans, A. G., and Marshall, D. B., 1980, "Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System," J. Am. Ceram. Soc., Vol. 63, pp. 574-581. https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
  10. Matthews, J. R., 1980, "Indentation Hardness and Hot Pressing," Acta Metall., Vol. 28, pp. 311-318. https://doi.org/10.1016/0001-6160(80)90166-2
  11. Derby, B. and Ashby, M. F., 1987, "A Microstructural Model for Primary Creep," Acta Metall., Vol. 35, pp. 1349-1353. https://doi.org/10.1016/0001-6160(87)90017-4
  12. Hill, R., 1992, "Similarity Analysis of Creep Indentation Tests," Proc. R. Soc. Lond. (A), Vol. 436, pp. 617-630. https://doi.org/10.1098/rspa.1992.0038
  13. Bower, A. F., Fleck, N. A., Needleman, A., and Ogbonna, N., 1993, "Indentation of a Power Law Creeping Solid," Proc. R. Soc. Lond. (A), Vol. 441, No. 1911, pp. 97-124. https://doi.org/10.1098/rspa.1993.0050
  14. Ogbonna, N., Fleck, N. A., and Cocks, C. F., 1995, "Transient Creep Analysis of Ball Indentation," Int. J. Mech. Sci., Vol. 37 (11), pp. 1179-1202. https://doi.org/10.1016/0020-7403(95)00016-Q
  15. Poisl, W. H., Oliver, W. C., and Fabes, B. D., 1995, "The Relationship between Indentation and Uniaxial Creep in Amorphous Selenium," J. Mater. Res., Vol. 10, pp. 2024-2032. https://doi.org/10.1557/JMR.1995.2024
  16. Lucas, B. N. and Oliver, W. C., 1999, "Indentation Power-Law Creep of High-purity Indium," Metall. Mater. Trans. (A), Vol. 30, pp. 601-610. https://doi.org/10.1007/s11661-999-0051-7
  17. Goodall, R. and Clyne, T. W., 2006, "A Critical Appraisal of the Extraction of Creep Parameters from Nanoindentation Data Obtained at Room Temperature," Acta Mater., Vol. 54, pp. 5489-5499. https://doi.org/10.1016/j.actamat.2006.07.020
  18. Elmustafa, A. A. and Stone D. S., 2007, "Stain Rate Sensitivity in Nanoindentation Creep of Hard Materials," J. Mater. Res., Vol. 22, pp. 2912-2916. https://doi.org/10.1557/JMR.2007.0374
  19. Sohn, S.J, 2007, A Study of Indentation Creep Using the Finite Element Method, PhD Thesis, University of Tennessee.
  20. Wang, C. L., Lai, Y. H., Huang, J. C. and Nieh, T. G., 2010, "Creep of Nanocrystalline Nickel: A Direct Comparison between Uniaxial and Nanoindentation Creep," Scripta Mater., Vol. 62, pp. 175-178. https://doi.org/10.1016/j.scriptamat.2009.10.021
  21. Lee, J. H., Zhou, C., Su, C. J., Gao, Y. F., and Pharr, G. M., 2010, "Similarity Relationships in Creep Contacts and Applications in Nanoindentation Tests," Mater. Res. Soc. Symp., Vol. 1224, pp. 209-214.
  22. Yang, W., Larson, B. C., Pharr, G. M., Ice, G. E., Budai, J. D., Tischler, J. Z., and Liu, W., 2004, "Deformation Microsctructure under Microindents in Single-crystal Cu using Three-dimensional X-ray Structural Microscopy," J. Mater. Res., Vol. 19, pp. 66-72. https://doi.org/10.1557/jmr.2004.19.1.66
  23. Durst, K., Backes, B., Franke, O., and Goken, M., 2006, "Indentation Size Effect in Metallic Materials: Modeling Strength from Pop-in to Macroscopic Hardness using Geometrically Necessary Dislocations," Acta Mater., Vol. 54, pp. 2547-2555. https://doi.org/10.1016/j.actamat.2006.01.036
  24. Bei, H., Gao, Y. F., Shim, S., George, E. P., and Pharr, G. M., 2008, "Strength Differences Arising from Homogeneous Versus Heterogeneous Dislocation Nucleation," Phys. Rev. Lett. (B), Vol. 77, 060103. https://doi.org/10.1103/PhysRevB.77.060103
  25. ABAQUS User's Manual 6.9, Simulia Company, Providence, RI.
  26. Tabor, D., 1951, The Hardness of Metals, Oxford University Press, London.
  27. Johnson, K. L., 1970, "The Correlation of Indentation Experiments," J. Mech. Phys. Solids, Vol. 18, pp. 115-126. https://doi.org/10.1016/0022-5096(70)90029-3
  28. Cheng, Y.-T. and Cheng, C.-M., 1998, "Scaling Approach to Conical Indentation in Elastic-Plastic Solids with Work Hardening," J. Appl. Phys., Vol. 84, pp. 1284-1291. https://doi.org/10.1063/1.368196

Cited by

  1. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep vol.37, pp.11, 2013, https://doi.org/10.3795/KSME-A.2013.37.11.1339
  2. Influence of Indenter Tip Geometry and Poisson's Ratio on Load-Displacement Curve in Instrumented Indentation Test vol.38, pp.9, 2014, https://doi.org/10.3795/KSME-A.2014.38.9.943