DOI QR코드

DOI QR Code

Biological Activities of Solvent Fractions from Methanolic Extract of Crataegi fructus

산사(Crataegifructus) 메탄올 추출물로부터 용매분획된 분획물의 생리활성

  • 박성진 (한림성심대학교 관광외식조리과) ;
  • 신언환 (울산과학대학교 호텔조리영양과) ;
  • 이재하 (신세계 SVN R&D)
  • Received : 2012.09.10
  • Accepted : 2012.11.20
  • Published : 2012.12.31

Abstract

The purpose of this study is to determine the possibility of using Crataegi fructus as natural health food source. The research was conducted to determine the biofunctional activities of Crataegi fructus extract. Methanolic extract from Crataegi fructus was partitioned by using organic solvents, including n-hexane, ethyl acetate, n-butanol, and water. Ethyl acetate soluble fraction was shown to have the strongest antioxidant activity ($RC_{50}=4.39{\mu}g/m{\ell}$) among the fractions. In the antimicrobial activity assays, ethyl acetate soluble fraction was effective in bacterial inhibition, against the cases of Escherichia coli and Klebsiella pneumonia, with minimum inhibitory concentrations in $125{\mu}g/m{\ell}$. In the anticomplementary activity assays, water soluble fraction was the most effective exhibiting 18.4% inhibitory activity.

산사추출물의 DPPH free radical 소거법에 의한 항산화활성은 ethyl acetate 분획($RC_{50}=4.39{\mu}g/m{\ell}$), butanol 분획($RC_{50}=6.25{\mu}g/m{\ell}$)에서 강한 항산화 활성을 보였으며, ${\alpha}$-tocopherol이나 BHA보다 유사하거나 강한 항산화 활성을 나타냈다. Linoleic acid에 대한 항지질과산화 활성 실험은 15일 째에 물층을 제외한 추출물, 분획물에서 높은 활성을 나타내었다. 박테리아에 대한 항균실험은 Staphylococcus aureus에서만 활성을 보이지 않았을 뿐 다른 피검균에서는 높은 활성을 보였다. 다만 fungi strain인 Candida albicands에 대해 각각 250 및 $500{\mu}g/m{\ell}$의 생육 억제 농도를 나타내었다. 항보체 활성화능을 측정한 결과, 물 층 18.4%를 제외한 다른 분획물은 10% 이하의낮은 억제효과를 보이거나 활성이 나타나지 않았다. 따라서 산사 추출물은 항산화 활성, 항지질과산화 활성, 항미생물 활성이 우수하였다. 이러한 결과를 바탕으로 산사 추출물을 이용하여 식품 및 음료 등과 같은 기능성 식품으로서의 다양한 산업적 응용분야에 널리 응용될 수 있을 것으로 생각된다.

Keywords

References

  1. Ames BN, Saul RL. 1987. Oxidative DNA damage, cancer and aging. Oxygen and human disease. Am Inter Med 107:536- 539
  2. Branen AL. 1975. Toxicology and biochemistry of butylated hydroxy anisol and butylated hydroxytoluene. J Am Oil Chem Soc 52:59-63 https://doi.org/10.1007/BF02901825
  3. Choe SY, Yang KH. 1982. Toxicological studies of antioxidants butylated hydroxytoluene (BHT) and butylated hydroxy anisol (BHA). Korean J Food Sci Technol 14:283-288
  4. Choi JS, Park JH, Kim HG, Young HS, Mun SI. 1993. Screening for antioxidant activity of plants and marine algae and its active principles from Prunus daviana. Kor J Pharmacol 24:299-303
  5. Chu CY, Lee MJ, Liao CL, Lin WL, Yin TF, Tseng TH. 2003. Inhibitory effect of hot-water extract from dried fruit if Crataegus pinnatifida on low-density lipoprotein (LDL) oxidation in cell and cell-free system. J Agr Food Chem 51:7583-7588 https://doi.org/10.1021/jf030407y
  6. Fumijo N, Keiichi G, Ryota S, Masayuki S, Miwa S, Yukihiko H. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Rad Biol Med 21:895-902 https://doi.org/10.1016/0891-5849(96)00237-7
  7. Han SS, Lo SC, Choi YH, Kim MJ, Kwak SS. 1999. Antioxidative compounds in extracts of Acer ginnala Max. Korean J Med Crop Sci 7:51-57
  8. Inatani R, Nakatani N, Fuwa H. 1983. Antioxidative effect of the constituents of rosemary (Rosmarinus officinalis L.) and their derivatives. Agr Biol Chem 47:521-528 https://doi.org/10.1271/bbb1961.47.521
  9. Kessler M, Ubeaud G, Jung L. 2003. Anti- and pro-oxidant activity of rutin and quercetin derivatives. J Pharm Pharmacol 55: 131-142 https://doi.org/10.1211/002235702559
  10. Kim JS, Lee KD, Kwon JH, Yoon HS. 1993. Antioxidative effectivencess of ether extract in Crataegus pinnatifida Bunge and Terminalia chebula rets. J Korean Agr Chem Soc 36:203-207
  11. Kim MJ, Hyun JO. 1997. Genetic variation in urushiol components of Rhus verniciflua Stokes. Kor J Breed 29:115-123
  12. Kim YY, Koo Sj. 1997. Anticomplementary activity and immunestimulating effect of the extracts from barley (Hordeum vulgare). Korean J Food Sci Technol 13:661-668
  13. Klerx JP, Benkelman CJ, Van DH, Willers JM. 1983. Microassay for colorimetric estimation of complement activity in guinea pig, human and mouse serum. J Immunol Meth 63:215-220 https://doi.org/10.1016/0022-1759(83)90425-8
  14. Kobayashi A, Kim MJ, Kawaz K. 1996. Uptake and exudation of phenolic compounds by wheat and antimicrobial components of the root exudate. Z Naturforsch 51:527-533
  15. Kwon HJ, Hyun SH, Choung SY. 2005. Traditional Cheness medicine improves dysfunction of peroxisome proliferatoractivated receptor alpha and microsomal triglyceride transfer protein on abnormalities in lipid metabolism in ethanol-fed rats. Biofactors 23:163-176 https://doi.org/10.1002/biof.5520230305
  16. Min BS, Huong HT, Kim JHm Jun HJ, Na MK, Nam NH, Lee HK, Bae K, Kanf SS. 2004. Furo-1,2-naphthoquinones from Crataegus pinnatifida with ICAM-1 expression inhibition activity. Planta Med 70:1166-1169 https://doi.org/10.1055/s-2004-835846
  17. Pratt DE, Huang MT, Ho ST, Lee CY. 1992. In phenolic compounds in food and their effects on health (II), Antioxidants and Cancer Prevention. Washington D.C. pp. 54-71
  18. Rhaman MM, Alexander IG. 2002. Antimicrobial constituents from the stem bark of Feronia limonia. Phytochem 59:73-77 https://doi.org/10.1016/S0031-9422(01)00423-X
  19. Shahidi F, Wanasundara PKJPD. 1992. Phenolic antioxidants. Crit Rev Food Sci Nutr 32:67-103 https://doi.org/10.1080/10408399209527581
  20. Song JC, Park NK, Hur HS, Bang MH, Baek NI. 2000. Examination and isolation of natural antioxidants from Korean medicinal plants. Korean J Med Crop Sci 8:98-102
  21. Xiong Q, Kadota S, Tadata T, Namba T. 1996. Antioxidative effects of phenylethanoids from Cistanche deserticola. Biol Pharmaceuti Bull 19:1580-1585 https://doi.org/10.1248/bpb.19.1580
  22. Yamada H, Yanahira S, Kiyhara H, Yon JC, Otsuka Y. 1989. Water-soluble glucans from the seed of Coix laorymajobi var. ma-yuen. Phytochem 25:129-132
  23. 한국약학대학협의회 약전분과회. 1981. 대한약전, 문성사, p. 790

Cited by

  1. Effects of Korean and Chinese Crataegi Fructrus on the Antioxidant Activity and Antiproliferation of Cancer Cells vol.26, pp.1, 2015, https://doi.org/10.7856/kjcls.2015.26.1.103
  2. Antiobesity Effects of Sansa (Crataegi fructus) on 3T3-L1 Cells and on High-Fat–High-Cholesterol Diet-Induced Obese Rats vol.20, pp.1, 2017, https://doi.org/10.1089/jmf.2016.3791
  3. Effects of Feral Haw (Crataegus pinnatifida BUNGE) Seed Extracts on the Antioxidant Activities vol.24, pp.4, 2014, https://doi.org/10.5352/JLS.2014.24.4.386
  4. Effects of Haw (Crataegus pinnatifida BUNGE) on Relaxation in the Lipid Components and Blood Glucose of Lipid Metabolism Syndrome vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1021
  5. Antioxidative activities of various solvent extracts from haw (Crataegus pinnatifida Bunge) vol.21, pp.2, 2014, https://doi.org/10.11002/kjfp.2014.21.2.246
  6. Antioxidative Activity of Feral Haw (Crataegus pinnatifida BUNGE) Seed Extracts Using Various Solvents vol.30, pp.1, 2014, https://doi.org/10.9724/kfcs.2014.30.1.033
  7. Influences of Wild Haw (Crataegus pinnatifida BUNGE) on Lowering BUN and Creatinine Concentrations in Dyslipidemia vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1029
  8. Antioxidant Activity of Sansa (Crataegi fructus) and Its Application to the Pork Tteokgalbi vol.33, pp.4, 2013, https://doi.org/10.5851/kosfa.2013.33.4.531
  9. Contents of Antioxidative Components from Pulpy and Seed in Wild Haw (Crataegus pinnatifida BUNGE) vol.23, pp.11, 2014, https://doi.org/10.5322/JESI.2014.23.11.1791
  10. 산사나무 추출물의 생리활성 평가 vol.45, pp.3, 2012, https://doi.org/10.5658/wood.2017.45.3.317
  11. 아가위첨가 닭갈비 소스의 항산화 활성 및 닭갈비의 품질특성 vol.24, pp.5, 2018, https://doi.org/10.20878/cshr.2018.24.5.007
  12. 산사 추출물을 이용한 천연염색 연구 vol.23, pp.4, 2012, https://doi.org/10.12940/jfb.2019.23.4.100