초록
최근 많은 소비자들이 관심 있는 물품 카테고리에 대한 정보를 얻기 위한 목적으로 종합 쇼핑몰이나 가격 비교 사이트를 방문하고 있다. 하지만, 이러한 웹 사이트들은 종종 이들에게 많은 상품들과 판매자가 포함된 지나치게 방대한 정보를 제공하여 소비자들의 구매 결정을 효과적으로 지원하지 못한다. 따라서 현대 온라인 쇼핑 에이전트들은 검색된 정보를 사용자들에게 제공하기 전에 보다 지능적인 방법으로 이를 가공할 필요가 있다. 본 논문은 특정 물품 카테고리 내에서 많은 상품들이 분포하고 있는 주요 가격대를 식별하는 방법을 제안하고자 한다. 이를 위해 한 개 카테고리 내 상품의 가격들을 벡터로 표현하고, 여기에 k-means 군집 분석을 적용하여 서로 비슷한 가격 벡터들을 포함하는 군집을 형성한 다음, 각 군집에서 주요 가격대를 추출하는 방법을 적용하였다. 일반적으로 가격은 소비자들의 구매 결정에서 가장 중요한 요인 중 하나이기 때문에, 추출된 주요 가격대들은 온라인 쇼핑 이용자들이 효과적으로 상품을 검색하는데 도움이 될 것으로 기대된다.
In recent, many consumers visit the online shopping malls or price comparison sites to collect the information on the product category that they are interested in. However, the volumes of the data provided by such web sites are often too enormous, and significant number of consumers have trouble in making purchase decision based on the plethora of products and sellers. In this context, modern online shopping agents need to process the retrieved information in more intelligent way before providing them to the users. This paper proposes a novel approach for identifying the main price ranges hidden in a single product category. To this end, the price of an item in the category is represented as a row vector and k-means clustering analysis is applied to the price vectors to produce the clusters that consists of the product items with similar price vectors. Then, the main price ranges of the product category can be identified from the result of clustering analysis. In general, the price is one of the most important factors in the consumers' purchase decision, and the identified main price ranges will be helpful for the online shoppers to find appropriate items effectively.