DOI QR코드

DOI QR Code

NMHCs measurement using a cryogenic concentration system and application on gas samples

저온농축장치를 이용한 NMHCs의 측정법과 가스 시료에 적용

  • Kim, Su Ha (Science of Measurement, University of Science and Technology) ;
  • Moon, Dong Min (Center for Gas Analysis, Korea Research Institute of Standards and Science) ;
  • Kim, Jin Seog (Science of Measurement, University of Science and Technology)
  • 김수하 (과학기술연합대학원대학교 측정과학과) ;
  • 문동민 (한국표준과학연구원 대기환경표준센터) ;
  • 김진석 (과학기술연합대학원대학교 측정과학과)
  • Received : 2012.10.30
  • Accepted : 2012.11.21
  • Published : 2012.12.25

Abstract

In this study, we have developed a cryogenic concentration system for the analysis of non-methane hydrocarbons (NMHCs) in air sample. NMHCs with nmol/mol level of concentrations in the atmosphere were quantified by a comparative method with certified reference gas mixture. GC/FID with cryogenic concentration system operated in the range from $-67^{\circ}C$ to $180^{\circ}C$ was adopted. After cryogenic concentration, a fast desorption by heating could achieve a large amount of sample injection into the GC/FID. The linearity of the system was verified with the peak areas of NMHCs of the concentration amount of sample. The reproducibility is less than 10% and the limit of detection (LOD) is 0.1 nmol/mol. For the application of this system, we analyzed NMHCs in gas samples taken from air and soil in Daejeon, Seosan and Goheung.

본 연구에서는 테들러백에 포집한 가스 시료 중의 NMHCs 성분의 분석을 위한 저온농축장치 시스템을 개발하였다. 개발한 저온농축장치는 냉동고를 이용하여 $-67^{\circ}C$에서 시료를 농축한 후 $180^{\circ}C$의 고온으로 탈착하는 시스템을 제작하였고, 많은 양의 시료가 GC/FID로 주입되게 함으로써 대기 중에 nmol/mol 농도(ppb)의 미량으로 존재하는 가스의 정량을 가능하게 하였다. 저온농축장치의 신뢰성을 위해 수행한 실험에서 농축시간과 피이크 면적이 비례함을 확인하였고, 10% 이내의 재현성과 0.1 nmol/mol의 검출한계를 확인하였다. 본 실험 방법을 실제 시료에 적용하기 위하여 대전, 서산, 고흥의 대기시료와 토양시료에서 채취한 가스 중의 NMHCs를 분석하였다.

Keywords

References

  1. C. T. Vincent, BSc(Hons.), Measurement of atmospheric hydrocarbons and air quality in Hong kong, The Hong Kong Polytechnic university (1998).
  2. E. J. Lim, Y. S. Kim and B. M. Kim, Korea Soc. Atmos. Envir., PA43, 289-290 (2003).
  3. K. L. So and T. Wang, Sci. Total Envir., 328(1-3), 161- 174 (2004). https://doi.org/10.1016/j.scitotenv.2004.01.029
  4. Erik Velasco, Atmos. Envir., 37(5), 625-637 (2003). https://doi.org/10.1016/S1352-2310(02)00896-8
  5. S. J. Liaw and T. L. Tso, Anal. Sci. Technol., 8(4), 807- 814 (1995).
  6. S. J. Jeon, B. J. Kim, J. S. Kim and G. S. Heo, Anal. Sci. Technol., 12(4), 332-340 (1999).
  7. KRISS, Development of measurement technology for solving climate change, KRISS/IR-2012-026, KRISS, 185-194 (2012).
  8. KRISS, Development of national standard PFCs greenhouse gas and establishment of continuous on line measurement system, KRISS/IR-2006-078, KMA, 22- 41 (2006).
  9. M. G. Kim, Y. L. Jung, Y. M. Seo, S. H. Nam and Y. J. Gwon, Anal. Sci. Technol., 14(3), 274-285 (2001).
  10. KRISS, Development of measurement methods for solving climate change, KRISS/IR-2011-074, KRCF (2011).
  11. M. K. Lee, Characteristic of a sorption trap preconcentrator for trace analysis of volatile organic compounds in air samples, Wonkwnag university (2009).
  12. KRISS, Evaluation of measurement uncertainty of the foundation for beginners, 15-19 (2011).
  13. J. Tan, S. Guo, Y. Ma, K. He, F. Yang, Y. Yu and J. Wang, Envir. Monitor. Assess., 183(1-4), 297-305 (2011). https://doi.org/10.1007/s10661-011-1922-0
  14. I. Devai and R. D. Delaune, Water, Air and Soil Poll., 88(1-2), 39-46 (1996).
  15. A. Guenther, C. Geron, T. Pierce, B. Lamb, P. Harley and R. Fall, Atmos. Envir., 34(12-14), 2205-2230 (2000). https://doi.org/10.1016/S1352-2310(99)00465-3
  16. H. Hellen, H. Hakola, K.-H. Pystynen, J. Rinne and S. Haapanala, Biogeosciences, 3, 167-174 (2006). https://doi.org/10.5194/bg-3-167-2006
  17. L. Donoso, R. Romero, A. Rondon, E. Fernandez, P. Oyola and E. Sanhueza, J. Atmos. Chem., 25, 201-214 (1996). https://doi.org/10.1007/BF00053791