DOI QR코드

DOI QR Code

Comparison of chemical and photochemical generation of hydrides in Se speciation study with HPLC-HG-ICPMS

HPLC-ICPMS를 이용한 셀레늄 화학종의 연구에서 화학적 및 광화학적 수소화물 발생법의 비교

  • Ji, Hana (Department of Chemistry Education, Korea National University of Education) ;
  • Pak, Yong-Nam (Department of Chemistry Education, Korea National University of Education)
  • 지하나 (한국교원대학교 화학교육학과) ;
  • 박용남 (한국교원대학교 화학교육학과)
  • Received : 2012.09.06
  • Accepted : 2012.11.04
  • Published : 2012.12.25

Abstract

In this research, hydride generation in HPLC-ICPMS for the selenium speciation was investigated. Chemical and photochemical vapor generation techniques were compared for the effective generation of selenium vapour. $HBr/KBrO_3$ was used for the chemical reduction and a UV lamp was used for the photochemical reduction. It was found out that the photochemical reduction was more effective than the chemical reduction in all of selenium species studied. The optimum conditions for the generation of vapour are 0.4% KI, 2.5% $NaBH_4$, and 1.0 M HCl. The enhancement factor using a photochemical hydride generation was from 6.3 to 16.7 times for inorganic and organic selenium species.

Keywords

References

  1. C. Casiot, J. Szpunar, R. Lobinski and M. Potin-Gautier, J. Anal. At. Spectrom., 14, 645-650 (1999). https://doi.org/10.1039/a809027k
  2. N. Jakubowski, R. Lobinskib and L. Moens, J. Anal. At. Spectrom., 19, 1-4 (2004). https://doi.org/10.1039/b313299b
  3. J. A. Day, S. S. Kannamkumarath, E. Yanes, M. Montes- Bayo'n and J. A. Caruso J. Anal. At. Spectrom., 17, 27-31 (2002). https://doi.org/10.1039/b104679a
  4. A. R. Timerbaev, Talanta, 52, 573-581 (2000). https://doi.org/10.1016/S0039-9140(00)00364-7
  5. J. W. Olesik, in 'Elemental Speciation: New Approaches for Trace Element Analysis', p. 151. J. A. Caruso, K. L. Sutton and K. L. Ackley Ed., Elsevier, New York, 2000.
  6. S. P. Mendez, M. M. Bayon, E. B. Gonzalez and A. Sanz Medel, J. Anal. At. Spectrom., 14, 1333-1339, (1999). https://doi.org/10.1039/a902524c
  7. C. Jorgelin, R. Wuillouda, A. Vonderheidea, J. Caruso, Spectrochimica Acta, 59B, 755-792 (2004).
  8. H. Ge, X. J. Cai, J. F. Tyson, P. C. Uden, E. R. Denoyer, E. Block, Anal. Commun., 33, 279-287 (1996). https://doi.org/10.1039/ac9963300279
  9. H. Cho, Y. Pak, J. of Kor. Chem. Soc., 55(3), 472-477 (2011). https://doi.org/10.5012/jkcs.2011.55.3.472
  10. A. Darrouzes and M. Potin-Gautier, Talanta, 75, 362- 368 (2008). https://doi.org/10.1016/j.talanta.2007.11.020
  11. M. E. Moreno, C. Perez-Conde and C. Camara, J. Anal. Atom. Spectrom., 15, 681-693 (2000). https://doi.org/10.1039/a909590j
  12. M. Johansson, G. Bordin and A. R. Rodriguez, Analyst, 125, 273-281 (2000). https://doi.org/10.1039/a906774d
  13. M. Vilano and R. Rubio, J. Anal. Atom. Spectrom., 15, 177-185 (2000). https://doi.org/10.1039/a907494e
  14. X. M. Guo, R. E. Sturgeon, Z. Mester and G. J. Gardner, Anal. Chem., 75, 2092-2100 (2003). https://doi.org/10.1021/ac020695h
  15. X. M. Guo, R. E. Sturgeon, Z. Mester and G. J. Gardner, Anal. Chem., 76, 2401-2408 (2004). https://doi.org/10.1021/ac0353536
  16. S. Simon, A. Barats, F. Pannier and Martine Potin- Gautier, Analytical and Bioanalytical Chemistry, 383(4), 562-569 (2005). https://doi.org/10.1007/s00216-005-0056-z
  17. Y. Yin, J. Liu, G. Jiang, Trends in Anal. Chem., 30(10), 1672-1684 (2011). https://doi.org/10.1016/j.trac.2011.04.021