DOI QR코드

DOI QR Code

모의 수출 조건에서 수확 후 CO2와 부직포 패드 처리가 느타리버섯 품질에 미치는 영향

Effect of Postharvest High CO2 Treatment and Anti-moisture Pad on the Quality of Fresh Oyster Mushroom during Export Simulation

  • 황용수 (충남대학교 농업생명과학대학 원예학과) ;
  • 이경민 (충남대학교 농업생명과학대학 원예학과) ;
  • 김민경 (한국농수산대학 특용작물학과) ;
  • 서건식 (한국농수산대학 특용작물학과)
  • Hwang, Yong-Soo (Dept. of Horticultural Science, College of Agriculture and Life Science, Chungnam National University) ;
  • Lee, Kyeung-Min (Dept. of Horticultural Science, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, Min-Kyung (Dept. of Industrial Crops, Korea National College Agriculture and Fisheries) ;
  • Seo, Geon-Sik (Dept. of Industrial Crops, Korea National College Agriculture and Fisheries)
  • 투고 : 2012.11.06
  • 심사 : 2012.11.20
  • 발행 : 2012.12.31

초록

느타리버섯 수출력 증진방안을 모색하기 위하여 선적전 고농도 $CO_2$ 및 흡습지 처리가 모의 수출과정에서 버섯의 품질에 미치는 영향을 조사하였다. 수출과정의 온도 변화는 표장용기 내부에 응축수를 만들어 품질을 떨어뜨리는 원인이 되며 흡습지는 경도 유지, 갈변 예방 등에서 효과적이었다. 그러나 모의소매과정에서의 고온($15^{\circ}C$) 노출은 그 효과를 크게 감소시켰다. 선적전 고농도의 $CO_2$ 처리는 경도에 대한 영향은 뚜렷하지 않았지만 버섯의 색택변화를 지연시켰다. 총당, 페놀 등 내적성분은 처리간 일정한 경향을 보이지 않았다. 전반적 수출잠재력은 현행 수출용 규격인 작은 버섯에서 높았다. 수출용 버섯의 품질저하는 포장용기내 응축수 발생과 온도변화의 영향을 크게 받아 이를 개선하기 위한 노력이 필요하다.

This study was aimed to find factors responsible for export potential of oyster mushroom through postharvest treatments including high pressure $CO_2$ and anti-moisture pad. Temperature fluctuation during export simulation induced the condensation of excess moisture resulting in the quality loss due to browning and decay. Anti-moisture pad was effective on inhibition of browning occurrence in part. High temperature exposure ($15^{\circ}C$) as retail simulation greatly offset the positive effect of anti-moisture pad. Short term treatment of high pressure $CO_2$ delayed the surface color changes as hunter L, a, and b values. There was no consistent tendency in total sugar and phenolics between treatments. In general, the export potential of small size mush-room (export size) at harvest was higher than large ones (domestic size). The major factors asso-ciated with the quality decrease of oyster mushroom during export were moisture condensation in packages and temperature fluctuation. Further research is required to improve mushroom export procedures.

키워드

참고문헌

  1. Aguirre, L., Frias, J. M., Barry-Ryan, C. and Grogan, H. 2009. Modelling browning and brown spotting of mushrooms (Agaricus bisporus) stored in controlled environmental conditions using image analysis. J. Food Engineering 91:280- 286. https://doi.org/10.1016/j.jfoodeng.2008.09.004
  2. Anantheswran, R. C., Beelman, R. B. and Roy, S. 1996. Modified atmosphere and modified humidity packaging of fresh mushrooms. J. Food Sci. 61:391-397. https://doi.org/10.1111/j.1365-2621.1996.tb14201.x
  3. Briones, G. L., Varoquaux, P., Chambroy, Y., Bouquant, J., Bureau, G. and Pascat, B. 1992. Storage of common mushroom under controlled atmospheres. International Journal of Food Science & Technology 27:493-505.
  4. Burton, K. S. and Noble, R. 1993. The influence of flush number, bruising and storage temperature on mushroom quality. Postharvest Biology and Technology 3:39-47. https://doi.org/10.1016/0925-5214(93)90025-X
  5. Burton, K. S., Frost, C. E. and Atkey, P. T. 1987. Effect of vacuum cooling on mushroom browning. International Journal of Food Science & Technology 22:599-606.
  6. Cantwell, M. I. and Kasmire, R. E. 2002. Postharvest handling systems: flower, leafy, and stem vegetables. p.423-433. (In) Postharvest technology of horticultural crops, 3rd Edition. (Technical editor A.A. Kader). Agriculture and Natural Resources. Pub. 3311. University of California.
  7. Cho, S. D., Lee, S. K. and Kim, G. H. 2008. Quality maintenance of oak mushroom during modified atmosphere storage as affected by packaging materials under various temperatures. Kor. J. Hort. Sci. Technol. 26:393-399. (in Korea).
  8. Choi, J. W., Cho, M. A., Kim, W. B., Kim, J. G. and Jhune, C. S. 2011. Effect of storage temperature and packaging material on the shelf-life and postharvest quality of king oyster mushroom. Kor. J. Hort. Sci. Technol. 29 (SUPPL II). 131. (in Korea)
  9. Dubois, M., Gills, K. A., Hamilton, J. K. Rebers, P. A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  10. Escriche, I., Serra, J. A., Gomez, M. and Galotto, M. J. 2001. Effect of ozone treatment and storage temperature on physicochemical properties of mushrooms(Agaris bisporus). Food Science and Technology International 7:251-258. https://doi.org/10.1106/6A9R-DKEV-ADV7-Y30X
  11. Hwang, Y. S., Min, J. H., Kim, D. Y., Kim, J. G. and Huber, D. J. 2012. Potential mechanisms associated with strawberry fruit firmness increases mediated by elevated $pCO_{2}$. Hort. Environ. Biotechnol. 53:52-59.
  12. Ke, D., Zhou, L. and Kader, A. A. 1994. Mode of oxygen and carbon dioxide action on strawberry ester biosynthesis. J. Amer. Sco. Hort. Sci. 119:971-975.
  13. Kim, K. M., Ko, J. A., Lee, J. S., Park, H. J. and Hanna, M. A. 2006. Effect of modified atmosphere packaging on the shelf-life of coated, whole and sliced mushrooms. LWT 39:364-71.
  14. Lange, D. L. and Kader, A. A. 1997. Elevated carbon dioxide exposure alters intracellular pH and energy charge in avocado fruit tissue. J. Amer. Soc. Hort. Sci. 122:253-257.
  15. Luh, B. S. and Phithakpol, B. 1972. Characteristics of polyphenol oxidase related to browning in cling peach. J. Food Sci. 37:264-268. https://doi.org/10.1111/j.1365-2621.1972.tb05832.x
  16. McCory, J. D. and Kilara, A. 1983. Control of enzymatic browning in processed mushrooms (Agaricus bisporus). J. Food Sci. 48:1479-1484. https://doi.org/10.1111/j.1365-2621.1983.tb03521.x
  17. Minamide, T., Habu, T. and Ogata, K. 1980. Effect of storage temperature on keeping freshness of mushrooms after harvest. J. Japan. Soc. Food Sci. Technol. 27:281-287. https://doi.org/10.3136/nskkk1962.27.6_281
  18. Nichols, R. and Hammond, J. B. W. 1973. Storage of mushrooms in pre-packs: The effect of changes in carbon dioxide and oxygen on quality. Journal of the Science of Food and Agriculture 24:1371-1381. https://doi.org/10.1002/jsfa.2740241108
  19. Ponce-Valadez, M., Fellman, S. M., Giovannoni, J., Gan, S. S. and Watkins, C. B. 2009. Differential fruit gene expression in two strawberry cultivars in response to elevated $CO_{2}$ during storage revealed by a heterologous fruit microarray approach. Postharvest Biology and Technology 51:131-140. https://doi.org/10.1016/j.postharvbio.2008.08.001
  20. Roy, S., Anantheswran, R. C. and Beelman, R. B. 1995. Fresh mushroom quality as affected by modified atmosphere packaging. J. Food Sci. 60:334-340. https://doi.org/10.1111/j.1365-2621.1995.tb05667.x
  21. Tano, K., Oule, M. K., Doyon, G., Lencki, R. W. and Arul, J. 2007. Comparative evaluation of the effect of storage temperature fluctuation on modified atmosphere packages of selected fruit and vegetables. Postharvest Biology and Technology 46:212-21. https://doi.org/10.1016/j.postharvbio.2007.05.008
  22. Wang, S. Y., Bunce, J. and Maas, J. L. 2003. Elevated carbon dioxide increases contents of antioxidant compounds in fieldgrown strawberries. J. Agric. Food Chem. 4325-4320.

피인용 문헌

  1. Changes in postharvest quality of Pleurotus eryngii treated with different shelf temperature and browning inhibitors vol.11, pp.4, 2013, https://doi.org/10.14480/JM.2013.11.4.297
  2. The effects of CO2treatment for freshness extension of Pleurotus eryngii vol.12, pp.4, 2014, https://doi.org/10.14480/JM.2014.12.4.280