DOI QR코드

DOI QR Code

Free Vibration of Three-Dimensional Laminated Composite Structures with Different Embedded Delamination Sizes and Locations

내재된 층간분리의 크기 및 위치 변화에 대한 3차원 복합소재 적층 구조의 자유 진동 특성

  • 노명현 (포항산업과학연구원 강구조연구소) ;
  • 박대용 (대림산업 기술개발원 특수교량팀) ;
  • 이상열 (안동대학교 토목공학과)
  • Received : 2012.02.02
  • Accepted : 2012.03.06
  • Published : 2012.03.31

Abstract

This study investigates free vibration characteristics of laminated composite structures with different embedded delamination sizes and locations using the solid element. The three-dimensional finite element (FE) delamination model described in this paper, in comparison with the conventional approaches, is more attractive not only because it shows better accuracy but also it shows the entire mode shape. The FE model using ABAQUS is used for studying free vibrations of laminates containing an various embedded delamination. The numerical results obtained are in good agreement with those reported by other investigators. In particular, new results reported in this paper are focused on the significant effects of the local vibration mode for various parameters, such as size of delamination, aspect ratio, and location of delamination.

본 연구에서는 고체요소를 사용하여 내재된 층간분리의 크기 및 위치 변화에 대한 복합소재 적층구조의 자유진동 특성을 분석한다. 본 연구에서 제시하는 3차원 유한요소 모델은 기존의 접근 방법에 비하여 정확성 뿐만 아니라 전체 진동 모드를 보여준다는 점에서 장점을 갖는다. ABAQUS가 적용된 유한요소 모델은 다양한 내재된 층간분리를 포함하는 적층구조의 자유진동을 분석하기 위하여 사용되었다. 도출된 수치해석 결과는 기존의 연구결과와 비교하여 잘 일치함을 보였다. 특히, 본 연구에서 제시한 결과는 층간분리의 크기, 길이-두께의 비율, 그리고 층간분리의 위치변화에 대하여 국부 진동 모드에 미치는 중요한 영향들에 대하여 초점을 둔다.

Keywords

References

  1. 박대용, 장석윤(2010) 강화변형률 솔리드 요소를 사용한 사각형태 층간분리를 갖는 복합적층판의 탄성좌굴해석, 한국복합신소재구조학회 논문집, 제1권 제2호, pp.1-13.
  2. 박대용, 이상열, 장석윤(2004) ANS를 갖는 DKM 요소에 EAS를 적용한 새로운 4절점 Mindlin 평판 휨 요소, 대한토목학회논문집, 제25권 제1A호, pp. 107-115.
  3. 이상열, 장석윤(2010) 다양한 기하학적 형상을 갖는 층간 분리된 복합신소재 적층구조의 동적 불안정성, 한국복합신소재구조학회 논문집, 제1권 제1호, pp.1-8.
  4. ABAQUS (2007) ABAQUS/CAE user's manual, version 6.7, Hibbitt, Karlsson and Sorensen Inc., Pawtucket, R.I.
  5. Andelfinger, U. and Ramm, E. (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements, Int. J. Nume. Meth. Engng. Vol. 36, pp. 1311-1337 https://doi.org/10.1002/nme.1620360805
  6. Kant T, and Swaminathan K. (2001) Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories. J Sound Vib. Vol.241 pp.319-27. https://doi.org/10.1006/jsvi.2000.3232
  7. Lee SY and Park DY (2007) Buckling analysis of laminated composite plates containing delaminations using the enhanced assumed strain solid element. Int J Solids Struct, Vol.44, pp. 8006-8027. https://doi.org/10.1016/j.ijsolstr.2007.05.023
  8. Naganarayana, B.P. and Atluri, S.N. (1995) Strength reduction and delamination growth in thin and thick composite plates under compressive loading, Computational Mechanics, Vol.16, pp.170-189. https://doi.org/10.1007/BF00369779
  9. Noor, A. K. and Mathers, M. D. (1975) Anisotropy and shear deformation in laminated composite plates, AIAA Journal, Vol.14, pp.282-285.
  10. Pandya, B.N. and Kant, T. (1988) Finite element stress analysis of laminated composite plates using higher order displacement model, Composite Science and Technology, Vol.32, pp.137-155. https://doi.org/10.1016/0266-3538(88)90003-6
  11. Park, D.Y. (2006) Buckling behavior of laminated composite structures with delamination, Ph.D. dissertation, University of Seoul, Seoul, Korea.
  12. Pian, T.H.H., Chen, D.P., and Kang, D. (1983) A new formulation of hybrid/mixed finite element, Computers and Structures, Vol.16, pp.81-87. https://doi.org/10.1016/0045-7949(83)90149-9
  13. Reddy, J.N. (1984a) Exact solutions of moderately thick laminated shells, Journal of Engineering Mechanics ASCE, Vol.110, pp.794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794)
  14. Reddy, J.N. (1984b) A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, Vol.51, pp.745-752. https://doi.org/10.1115/1.3167719
  15. Rinderknecht, S. and Kroplin, B. (1995) A finite element model for delamination in composite plates, Mechanics of Composite Materials and Structures, Vol.2, pp.19-47. https://doi.org/10.1080/10759419508945829
  16. Senthilnathan, N. R., Lim, K.H., Lee, K.H. and Chow, S.T. (1987) Buckling of shear deformable plates, AIAA Journal, Vol.25, pp.1268-1271. https://doi.org/10.2514/3.48742
  17. Sheinman, I. and Soffer, M. (1990) Effect of delamination on the nonlinear behavior of composite laminated beams, ASME Journal of Engineering Material and Technology, Vol.11, pp.393-397.
  18. Simitses, G.J., Sallam, S. and Yin, W.L. (1985) Effect of delamination of axially loaded homogeneous laminated plates, AIAA Journal, Vol.23, pp.1437-1444. https://doi.org/10.2514/3.9104
  19. Simo, J.C. and Rifai, M.S. (1990) A class of mixed assumed strain methods and the method of incompatible modes, International Journal of Numerical Methods in Engineering, Vol.29, pp.1595-1638. https://doi.org/10.1002/nme.1620290802
  20. Suemasu H. (1993) Effects of multiple delaminations on compressive buckling behaviors of composite panels, Journal of Composite Materials, Vol.27, pp.1172-1192. https://doi.org/10.1177/002199839302701202
  21. Wang, J.T., Pu, H.N., and Lin, C.C. (1997) Buckling of beam-plates having multiple delaminations, Journal of Composite Materials, Vol.31, pp.1002-1025. https://doi.org/10.1177/002199839703101003
  22. Whitcomb, J.D. (1989) Three-dimensional analysis of a postbuckled embedded delamination, Journal of Composite Materials, Vol. 23, pp. 862-889. https://doi.org/10.1177/002199838902300901
  23. Whitcomb, J.D. (1989) Predicted and observed effects of stacking sequence and delamination size on instability related delamination growth, Journal of Composite and Technology Res, Vol.11, pp.94-98. https://doi.org/10.1520/CTR10158J
  24. Whitney, J. M. and Pagano, N.J. (1970) Shear deformation in heterogeneous anisotropic plates, ASME Journal of Applied Mechanics, Vol.37, pp.1031-1036. https://doi.org/10.1115/1.3408654

Cited by

  1. 3D 프린터를 활용한 PLA 폴리머 Space Truss의 최적화 vol.20, pp.1, 2020, https://doi.org/10.9712/kass.2020.20.1.61