References
- Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970) Analysis of Thick and Thin Shell Structures by Curved Finite Elements. Int. J. Num. Meth. Eng., 2, pp.419-451. https://doi.org/10.1002/nme.1620020310
- Arciniega, R. A. and Reddy, J. N. (2007) Tensor- based finite element formulation for geometrically nonlinear analysis of shell structures. Comput. Meth. Appl. Mech. Eng., 196, pp.1048-1073. https://doi.org/10.1016/j.cma.2006.08.014
- Crisfield, M.A. (1981) A fast incremental/iterative solution procedure that handles snap-through. Comput. Struct., 13, pp.55-62. https://doi.org/10.1016/0045-7949(81)90108-5
- Han, S.C., Ham, H.D. and Kanok-Nukulchai, W. (2008) Geometrically non-linear analysis of arbitrary elastic supported plates and shells using an element-based Lagrangian shell element. International Journal of Non-linear Mechanics, 43, pp.53-64. https://doi.org/10.1016/j.ijnonlinmec.2007.09.011
- Han, S.C., Kim, K.D. and Kanok-Nukulchai, W. (2004) An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells. Structural Engineering and Mechanics, 18, pp.807-829. https://doi.org/10.12989/sem.2004.18.6.807
- Han, S.C., Lee, S.Y. and Rus, G. (2006) Postbuckling analysis of laminated composite plates subjected to the combination of the in-plane shear, compression and lateral loading. International Journal of Solids and Structures, 43(18-19), pp.5713-5735. https://doi.org/10.1016/j.ijsolstr.2005.08.004
- Han, S.C., Tabiei, A. and Park, W.T. (2008) Geometrically nonlinear analysis of laminated composite thin shells using a modified first-order shear deformable elementbased Lagrangian shell element. Composite Structures, 82, pp.465-474. https://doi.org/10.1016/j.compstruct.2007.01.027
- Han, S.C., Kanok-Nukulchai, W. and Lee, W. H. (2011) A refined finite element for first-order plate and shell analysis. Structural Engineering and Mechanics, 40, pp.191-213. https://doi.org/10.12989/sem.2011.40.2.191
- Hughes, T.J.R., and Liu, W.K. (1981) Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput. Meth. Appl. Mech. Eng., 26, pp.331-362. https://doi.org/10.1016/0045-7825(81)90121-3
- Kanok-Nukulchai, W. and Wong, W.K. (1988) Elementbased Lagrangian formulation for large-deformation analysis. Comput. Struct., 30, pp.967-974. https://doi.org/10.1016/0045-7949(88)90136-8
- Kim K.D., Lomboy G.R. and Han S.C. (2003) A corotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells. Computational Mechanics, 30(4), pp.330-342. https://doi.org/10.1007/s00466-003-0415-6
- Lee, S.J. and Kanok-Nukulchai, W. (1998) A Nine-Node Assumed Strain Finite Element for Large Deformation Analysis of Laminated Shells. Int. J. Num. Meth. Eng. 42, pp.777-798. https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
- Liu, W.K., Lam, D., Law, S.E. and Belytschko, T. (1986) Resultant stress degenerated shell element. Comput. Meth. Appl. Mech. Eng., 55, pp.259-300. https://doi.org/10.1016/0045-7825(86)90056-3
- Park, W.T., Chang, S.Y. and Chun K.S. (2010) Comparison of Various Shear Deformation Functions for Laminated Composite/Sandwich Plates. J. Korean Soc. Adv. Comp. Struc., 3(1), pp.1-9.
Cited by
- Nonlinear Analysis of Composite Plates and Shells Subjected to In-Plane Loading vol.877, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/amm.877.341