DOI QR코드

DOI QR Code

Enhanced Low-field Magnetoresistance of La0.7Sr0.3Mn1+dO3-Mn3O4 Composite Films Prepared by ex-situ Solid Phase Crystallization

  • Kang, Young-Min (Department of Materials Science and Engineering, Seoul National University, Research Institute of Advanced Materials (RIAM)) ;
  • Kim, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University, Research Institute of Advanced Materials (RIAM)) ;
  • Yoo, Sang-Im (Department of Materials Science and Engineering, Seoul National University, Research Institute of Advanced Materials (RIAM))
  • Received : 2012.11.06
  • Accepted : 2012.12.17
  • Published : 2012.12.31

Abstract

We report improved low-field magnetoresistance (LFMR) effects of the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3-Mn_3O_4$ composite films with the nominal composition of $La_{0.7}Sr_{0.3}MnO_3$(LSMO)-50 mol% $Mn_3O_4$. The composite films were fabricated by ex-situ solid phase crystallization (SPC) of amorphous films at the annealing temperature region of $900-1100^{\circ}C$ for 2 h in a pure oxygen atmosphere. The amorphous films were deposited on polycrystalline $BaZrO_3$ (poly-BZO) substrates by dc-magnetron sputtering at room temperature. The Curie temperatures ($T_C$) of all composite films were insignificantly altered in the range of 368-372 K. The highest LFMR value of 1.29 % in 0.5 kOe with the maximum dMR/dH value of $37.4%kOe^{-1}$ at 300 K was obtained from 900 nm-thick composite film annealed at $1100^{\circ}C$. The improved LFMR properties of the composite films are attributed to effective spin-dependent scattering at the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3$ grain boundaries sharpened by adjacent chemically compatible $Mn_3O_4$ grains.

Keywords

References

  1. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999). https://doi.org/10.1080/000187399243455
  2. A. M. Haghiri-Gosnet and J. P. Renard, J. Phys. D 36, R127 (2003). https://doi.org/10.1088/0022-3727/36/8/201
  3. W. Prellier, P. Lecoeur, and B. Mercey, J. Phys.: Condens. Matter. 13, R915 (2001). https://doi.org/10.1088/0953-8984/13/48/201
  4. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993). https://doi.org/10.1103/PhysRevLett.71.2331
  5. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Science 264, 413 (1994). https://doi.org/10.1126/science.264.5157.413
  6. H. Gencer, M. Pektas, Y. Babur, V. S. Kolat, T. Izgi, and S. Ataly, J. Magnetics 17, 176 (2012). https://doi.org/10.4283/JMAG.2012.17.3.176
  7. H. Y. Hwang, S.-W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996). https://doi.org/10.1103/PhysRevLett.77.2041
  8. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 81, 1953 (1998). https://doi.org/10.1103/PhysRevLett.81.1953
  9. R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao, Appl. Phys. Lett. 68, 2291 (1996). https://doi.org/10.1063/1.116167
  10. A. Gupta, G. Q. Gong, Gang Xiao, P. R. Duncombe, P. Lecoeur, P. Trouilloud, Y. Y. Wang V. P. Dravid, and J. Z. Sun, Phys. Rev. B 54, R15629 (1996). https://doi.org/10.1103/PhysRevB.54.R15629
  11. X. S. Yang, Y. Yang. W. He, C. H. Cheng, and Y. Zhao, J. Phys. D: Appl. Phys. 41, 115009 (2008). https://doi.org/10.1088/0022-3727/41/11/115009
  12. A. Gaur and G. D. Varma, J. Alloys Compd. 453, 423 (2008). https://doi.org/10.1016/j.jallcom.2006.11.132
  13. Y.-M. Kang, H.-J. Kim, and S.-I. Yoo, Appl. Phys. Lett. 95, 052510 (2009). https://doi.org/10.1063/1.3177192
  14. D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Feild, and P. R. Duncombe, Appl. Phys. Lett. 75, 995 (1999). https://doi.org/10.1063/1.124577
  15. C. Xionga, H. Hu, Y. Xiong, Z. Zhang, H. Pi, X. Wu, L. Li, F. Wei, and C. Zheng, J. Alloys Compd. 479, 357 (2009). https://doi.org/10.1016/j.jallcom.2008.12.087
  16. J. Kumar, R. K. Singh, H. K. Singh, P. K. Siwach, R. Singh, and O. N. Srivastava, J. Alloys Compd. 455, 289 (2008). https://doi.org/10.1016/j.jallcom.2007.01.028
  17. P. Kameli, H. Salamati, and M. Hakimi, J. Alloys Compd. 463, 18 (2008). https://doi.org/10.1016/j.jallcom.2007.09.025
  18. H.-J. Kim and S.-I. Yoo, J. Alloys Compd. 521, 30 (2012). https://doi.org/10.1016/j.jallcom.2011.12.121
  19. S. Valencia. O. Castano, J. Fontcuberta, B. Martinez, and L. Balcells, J. Appl. Phys. 94, 2524 (2003). https://doi.org/10.1063/1.1589174
  20. Z. Bi, E. Weal, H. Luo, A. Chen, J. L. MacManus-Driscoll, Q. Jia, and H. Wang, J. Appl. Phys. 109, 054302 (2011). https://doi.org/10.1063/1.3552594
  21. L. Yan, L. B. Kong, T. Yang. W. C. Goh, C. Y. Tan, C. K. Ong, M. A. Rahman, T. Osipowicz, and M. Q. Ren, J. Appl. Phys. 96, 1568 (2004). https://doi.org/10.1063/1.1763237
  22. S. A. Koster, V. Moshnyaga, K. Samwer, O. I. Lebedev, G. van Tendeloo, O. Shapoval, and A. Belenchuk, Appl. Phys. Lett. 81, 1648 (2002). https://doi.org/10.1063/1.1503849
  23. A. Chen, Z. Bi, C. F. Tsai, J. H. Lee, Q. Su, X. Zhang, Q. Jia, J. L. MacManus-Driscoll, and H. Wang, Adv. Funct. Mater. 21, 2423 (2011). https://doi.org/10.1002/adfm.201002746
  24. Y.-M. Kang, A. N. Ulyanov, S. Y. Lee, and S.-I. Yoo, Met. Mater. Int. 17, 1045 (2011) https://doi.org/10.1007/s12540-011-6026-4
  25. I.-B. Shim, B.-W. Lee, and C. S. Kim, J. Magn. Magn. Mater. 239, 279 (2002). https://doi.org/10.1016/S0304-8853(01)00605-9
  26. K.-K. Choi, T. Taniyama, and Y. Yamazaki, J. Appl. Phys. 90, 6145 (2001). https://doi.org/10.1063/1.1416860
  27. J. A. M. van Roosmalen, P. van Vlaanderen, and E. H. P. Cordfunke, J. Solid State Chem. 114, 516 (1995). https://doi.org/10.1006/jssc.1995.1078
  28. Y.-M. Kang, S.-H. Wee, S.-I. Baik, S.-G. Min, S.-C. Yu, S.-H. Moon, Y.-W. Kim, and S.-I. Yoo, J. Appl. Phys. 97, 10A319 (2005). https://doi.org/10.1063/1.1855460
  29. Y.-M. Kang, A. N. Ulyanov, and S.-I. Yoo, Phys. Stat. Sol. A 204, 763 (2007). https://doi.org/10.1002/pssa.200622412
  30. A. S Borovick-Ramanov and M. P. Orlova, Sov. Phys. JETP 5, 1023 (1957).