DOI QR코드

DOI QR Code

Time Resolved Effect of Heat Dispersion on Magnetic Stability in Ferromagnetic Ising Thin-Films: Monte Carlo Simulation

  • Laosiritaworn, W. (Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University) ;
  • Laosiritaworn, Y. (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University)
  • 투고 : 2012.07.09
  • 심사 : 2012.11.20
  • 발행 : 2012.12.31

초록

In this work, Monte Carlo simulation was used to investigate the magnetization properties of thin ferromagnetic films under a perturbation from a supplied heat pulse on one surface of the films. The finite difference method was used to extract the local temperature of each layer of the films as a function of time for various heat source power and heating period. Then, with the variation of the films temperature, Metropolis method was used to update the magnetic moment in magnetic grain, under the Ising framework and using the FePt parameters. With the extracted magnetization profiles, the relationship between magnetization relaxation in accordance with relevant heat parameters and films thickness was reported and discussed, with a purpose to form a database for future use.

키워드

참고문헌

  1. T. Osaka, T. Asahi, J. Kawaji, and T. Yokoshima, Electrochim. Acta 50, 4576 (2005). https://doi.org/10.1016/j.electacta.2004.10.099
  2. Y. Laosiritaworn, J. Poulter, and J. B. Staunton, Phys. Rev. B 70, 104413 (2004). https://doi.org/10.1103/PhysRevB.70.104413
  3. J.-S. Suen, M. H. Lee, G. Teeter, and J. L. Erskine, Phys. Rev. B 59, 4249 (1999).
  4. Y. Li, J.-H. Moon, and K.-J. Lee, J. Magnetics 16, 323 (2011). https://doi.org/10.4283/JMAG.2011.16.4.323
  5. J. Eisenmenger and I. K. Schuller, Nature Mater. 2, 437 (2003). https://doi.org/10.1038/nmat934
  6. Y. Laosiritaworn, S. Ananta, and R. Yimnirun, Phys. Rev. B 75, 054417 (2007). https://doi.org/10.1103/PhysRevB.75.054417
  7. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford (1999).
  8. O. A. Ivanov, L. V. Solina, V. A. Demshima, and L. M. Maget, Phys. Met. Metall. 35, 81 (1973).
  9. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (1987).
  10. Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K. Hono, J. Appl. Phys. 95, 2690 (2004). https://doi.org/10.1063/1.1643187
  11. B. Xu, C. W. Chia, Q. Zhang, Y. T. Toh, C. An, and G. Vienne, Jpn. J. Appl. Phys. 50, 09MA05 (2011). https://doi.org/10.1143/JJAP.50.09MA05
  12. J. B. Staunton, L. Szunyogh, A. Buruzs, B. L. Gyorffy, S. Ostanin, and L. Udvardi, Phys. Rev. B 74, 144411 (2006). https://doi.org/10.1103/PhysRevB.74.144411
  13. J.-U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, J. Appl. Phys. 91, 6595 (2002). https://doi.org/10.1063/1.1470254
  14. Z. Li, D. Wei, and F. Wei, J. Magn. Magn. Mater. 320, 3108 (2008). https://doi.org/10.1016/j.jmmm.2008.08.085
  15. O. Hovorka, S. Devos, Q. Coopman, W. J. Fan, C. J. Aas, R. F. L. Evans, Xi Chen, G. Ju, and R. W. Chantrell, Appl. Phys. Lett. 101, 052406 (2012). https://doi.org/10.1063/1.4740075
  16. S. Greaves, Y. Kanai, and H. Muraoka, IEEE Trans. Magn. 48, 1794 (2012). https://doi.org/10.1109/TMAG.2012.2187776
  17. P.-W. Huang, X. Chen, and R. H. Vitora, IEEE Trans. Magn. 48, 3188 (2012). https://doi.org/10.1109/TMAG.2012.2196991
  18. T. W. McDaniel, J. Appl. Phys. 112, 013914 (2012). https://doi.org/10.1063/1.4733311
  19. I. Hatta, Thermochim. Acta 446, 176 (2006). https://doi.org/10.1016/j.tca.2006.02.013
  20. Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K. Hono, J. Appl. Phys. 95, 2690 (2004).
  21. B. Xu, H. Yuan, J. Zhang, R. Ji, Q. Zhang, X. Miao, and T. C. Chong, J. Magn. Magn. Mater. 320, 731 (2008).
  22. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953). https://doi.org/10.1063/1.1699114
  23. Y. Laosiritaworn, Thin Solid Films 517, 5189 (2009). https://doi.org/10.1016/j.tsf.2009.03.103
  24. Y. Laosiritaworn, IEEE Trans. Magn. 45, 2659 (2009). https://doi.org/10.1109/TMAG.2009.2018950
  25. Y. Laosiritaworn, Adv. Mater. Res. 55, 385 (2008). https://doi.org/10.4028/www.scientific.net/AMR.55-57.385
  26. L. Neel, Adv. Phys. 4, 191 (1955). https://doi.org/10.1080/00018735500101204
  27. W. F. Brown Jr., IEEE Trans. Magn. 15, 1196 (1979). https://doi.org/10.1109/TMAG.1979.1060329
  28. A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081 (1991). https://doi.org/10.1103/PhysRevB.44.5081
  29. J.-U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, J. Appl. Phys. 91, 6595 (2002). https://doi.org/10.1063/1.1470254
  30. Y. Ma, X. Chen, and B. Liu, Microsyst. Technol. In press DOI 10.1007/s00542-012-1668-9 (2012).
  31. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, Proc. IEEE 96, 1810 (2008). https://doi.org/10.1109/JPROC.2008.2004315
  32. S.-S. Ha, K.-J. Lee, and C.-Y. You, Curr. Appl. Phys. 10, 659 (2010). https://doi.org/10.1016/j.cap.2009.08.013
  33. C.-Y. You, S.-S. Ha, and H.-W. Lee, J. Magn. Magn. Mater. 321, 3589 (2009). https://doi.org/10.1016/j.jmmm.2009.06.076
  34. C.-Y. You, I. M. Sung, and B.-K. Joe, Appl. Phys. Lett. 89, 222513 (2006). https://doi.org/10.1063/1.2399441
  35. C.-Y. You and S.-S. Ha, Appl. Phys. Lett. 91, 022507 (2007). https://doi.org/10.1063/1.2754351

피인용 문헌

  1. Thermal Distribution and Magnetic Stability Relation in Ferromagnetic Ising Thin Films: Monte Carlo and Finite Element Analysis vol.156, pp.1, 2014, https://doi.org/10.1080/10584587.2014.907073