DOI QR코드

DOI QR Code

Hyperthermia Promotes Apoptosis and Suppresses Invasion in C6 Rat Glioma Cells

  • Wang, Dong-Chun (Tangshan Worker Hospital) ;
  • Zhang, Yan (Department of Neurosurgery, Second Affiliated Hospital of Nanchang University) ;
  • Chen, Hai-Yan (Department of Anesthesiology, School of Medicine, University of Utah) ;
  • Li, Xiao-Li (Tangshan Worker Hospital) ;
  • Qin, Li-Juan (Department of Physiology, College of Basic Medical Sciences, Hebei United University) ;
  • Li, Ya-Juan (Tangshan Worker Hospital) ;
  • Zhang, Hong-Yi (Tangshan Worker Hospital) ;
  • Wang, Shuo (Department of Neurosurgery, Beijing Tiantan Hospital Attached to the Capital Medical University)
  • Published : 2012.07.31

Abstract

Gliomas are a group of heterogeneous primary central nervous system tumors. Hyperthermia has proven to be a potential therapeutic tool for cancers in the clinic. However, the molecular mechanisms of hyperthermia remain unclear. The objective of this study was to investigate the effects of hyperthermia on the invasiveness in C6 glioma cells and related molecular pathways. Here our data show hyperthermia stimulated the release of tumor necrosis factor-alpha (TNF-${\alpha}$) and decreased C6 glioma cell migration and invasive capability at 30, 60, 120 and 180 min; with increased spontaneous apoptosis in C6 glioma cells at 120 min. We also found mitogen-activated protein kinase (P38 MAPK) protein expression to be increased and nuclear factor-kappa B (NF-${\kappa}B$) protein expression decreased. Based on the results, we conclude that hyperthermia alone reduced invasion of C6 glioma cells through stimulating TNF-${\alpha}$ signaling to activate apoptosis, enhancing P38 MAPK expression and inhibiting the NF-${\kappa}B$ pathway, a first report in C6 rat glioma cells.

Keywords

References

  1. Ashkenazi A, Pai RC, Fong S, et al (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest, 104, 155-62. https://doi.org/10.1172/JCI6926
  2. Baud V, Karin M (2001). Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol, 11, 372-7. https://doi.org/10.1016/S0962-8924(01)02064-5
  3. Beg AA, Baltimore D (1996). An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science, 274, 782-4. https://doi.org/10.1126/science.274.5288.782
  4. de Vera ME, Wong JM, Zhou JY, et al (1996). Cytokine-induced nitric oxide synthase gene transcription is blocked by the heat shock response in human liver cells. Surgery, 120, 144-9. https://doi.org/10.1016/S0039-6060(96)80281-9
  5. Dorsett Y, Tuschl T (2004). siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov, 3, 318-29. https://doi.org/10.1038/nrd1345
  6. Feinstein DL, Galea E, Aquino DA, et al (1996). Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem, 271, 17724-32. https://doi.org/10.1074/jbc.271.30.17724
  7. Fiorentini G, Giovanis P, Rossi S, et al (2006). A phase II clinical study on relapsed malignant gliomas treated with electro-hyperthermia. In Vivo, 20, 721-4.
  8. Flanagan SW, Moseley PL, Buettner GR (1998). Increased flux of free radicals in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin trapping. FEBS Lett, 431, 285-6. https://doi.org/10.1016/S0014-5793(98)00779-0
  9. Frank J, Kelleher DK, Pompella A, et al (1998). Enhancement of oxidative cell injury and antitumor effects of localized $44^{\circ}C$ hyperthermia upon combination with respiratory hyperoxia and xanthine oxidase. Cancer Res, 58, 2693-8.
  10. Gong XM, Choi J, Franzin CM, el al (2004). Conformation of membrane-associated proapoptotic tBid. J Biol Chem, 279, 28954-60. https://doi.org/10.1074/jbc.M403490200
  11. Hagemann T, Wilson J, Kulbe H, et al (2005). Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol, 175, 1197-205. https://doi.org/10.4049/jimmunol.175.2.1197
  12. Hall DM, Buettner GR, Matthes RD, Gisolfi CV (1994). Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of NO-heme in blood. J Appl Physiol, 77, 548-53.
  13. Haveman J, Sminia P, Wondergem J, van der Zee J, Hulshof MC (2005). Effects of hyperthermia on the central nervous system: what was learnt from animal studies? Int J Hyperthermia, 21, 473-87. https://doi.org/10.1080/02656730500159079
  14. Hayden MS, Ghosh S: Signaling to NF-${\kappa}B$ (2004). Genes Dev, 18, 2195-224. https://doi.org/10.1101/gad.1228704
  15. Kato S, Sadarangani A, Lange S et al (2007). The oestrogen metabolite 2-methoxyoestradiol alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand mediates apoptosis in cancerous but not healthy cells of the human endometrium. Endocr Relat Cancer, 14, 351-68. https://doi.org/10.1677/ERC-07-0008
  16. Kischkel FC, Lawrence DA, Chuntharapai A, et al (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity, 12, 611-20. https://doi.org/10.1016/S1074-7613(00)80212-5
  17. Kokura S, Yoshida N, Ueda M, et al (2003). Hyperthermia enhances tumor necrosis factor alpha-induced apoptosis of a human gastric cancer cell line. Cancer Lett, 201, 89-96. https://doi.org/10.1016/S0304-3835(03)00463-4
  18. Kulbe H, Hagemann T, Szlosarek PW, Balkwill FR, Wilson JL (2005). The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res, 65, 10355-62. https://doi.org/10.1158/0008-5472.CAN-05-0957
  19. Lee YJ, Hou Z, Curetty L, Cho JM, Corry PM (1993). Synergistic effects of cytokine and hyperthermia oncytotoxicity in HT-29 cells are not mediated by alteration of induced protein levels. J Cell Physiol, 155, 27-35. https://doi.org/10.1002/jcp.1041550105
  20. Li P, Nijhawan D, Budihardjo I, et al (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479-89. https://doi.org/10.1016/S0092-8674(00)80434-1
  21. Li Q, Verma IM, (2002). NF_B regulation in the immune system. Nat Rev Immunol, 2, 725-34. https://doi.org/10.1038/nri910
  22. Liu ZG, Hsu H, Goeddel DV, Karin M (1996). Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell, 87, 565-76. https://doi.org/10.1016/S0092-8674(00)81375-6
  23. McCoy MK, Tansey MG (2008). TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation, 5, 45. https://doi.org/10.1186/1742-2094-5-45
  24. Montesano R, Soulie P, Eble JA, Carrozzino F (2005). Tumour necrosis factor alpha confers an invasive, transformed phenotype on mammary epithelial cells. J Cell Sci, 118, 3487-500. https://doi.org/10.1242/jcs.02467
  25. Moran CJ, Marchosky JA, Wippold FJ, DeFord JA, Fearnot NE (1995). Conductive interstitial hyperthermia in the treatment of intracranial metastatic disease. J Neurooncol, 26, 53-63. https://doi.org/10.1007/BF01054769
  26. Oh KJ, Barbuto S, Meyer N, et al (2005). Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study. J Biol Chem, 280, 753-67. https://doi.org/10.1074/jbc.M405428200
  27. Overgaard J, Gonzalez Gonzalez D, Hulshof MC, et al (1995). Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet, 345, 540-3. https://doi.org/10.1016/S0140-6736(95)90463-8
  28. Park SM, Schickel R, Peter ME (2005). Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol, 17, 610-6. https://doi.org/10.1016/j.ceb.2005.09.010
  29. Ryu J, Ku BM, Lee YK, et al (2011). Resveratrol reduces TNF-$\alpha$-induced U373MG human glioma cell invasion through regulating NF-${\kappa}B$ activation and uPA/uPAR expression. Anticancer Res, 31, 4223-30.
  30. Shen H-M, Pervaiz S (2006). TNF receptor superfamily-induced cell death: redoxdependent execution. FASEB J, 20, 1589-98. https://doi.org/10.1096/fj.05-5603rev
  31. Silva AC, Oliveira TR, Mamani JB, and et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine, 6, 591-603.
  32. Skibba JL, Powers RH, Stadnicka A, Kalbfleisch JH (1990). Lipid peroxidation caused by hyperthermic perfusion of rat liver. Biochem Pharmacol, 40, 1411-4. https://doi.org/10.1016/0006-2952(90)90411-D
  33. Sminia P, van der Zee J, Wondergem J, Haveman J (1994). Effect of hyperthermia on the central nervous system: a review. Int J Hyperthermia, 10, 1-30. https://doi.org/10.3109/02656739409009328
  34. Sneed PK, Stauffer PR, Gutin PH, et al (1991). Interstitial irradiation and hyperthermia for the treatment of recurrent malignant brain tumors. Neurosurgery, 28, 206-15. https://doi.org/10.1227/00006123-199102000-00006
  35. Sneed PK, Gutin PH, Stauffer PR, et al (1992). Thermoradiotherapy of recurrent malignant brain tumors. Int J Radiat Oncol Biol Phys, 23, 853-61. https://doi.org/10.1016/0360-3016(92)90659-6
  36. Sneed PK, Stauffer PR, McDermott MW, et al (1998). Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys, 40, 287-95. https://doi.org/10.1016/S0360-3016(97)00731-1
  37. Stea B, Cetas TC, Cassady JR, et al (1990). Interstitial thermoradiotherapy of brain tumors: preliminary results of a phase I clinical trial. Int J Radiat Oncol Biol Phys, 19, 1463-71. https://doi.org/10.1016/0360-3016(90)90359-R
  38. Stea B, Rossman K, Kittelson J, et al (1994). Interstitial irradiation versus interstitial thermoradiotherapy for supratentorial malignant gliomas: a comparative survival analysis. Int J Radiat Oncol Biol Phys, 30, 591-600. https://doi.org/10.1016/0360-3016(92)90945-E
  39. Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007). Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol, 25, 4127-36. https://doi.org/10.1200/JCO.2007.11.8554
  40. Stupp R, Mason WP, van den Bent MJ, et al (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 352, 987-96. https://doi.org/10.1056/NEJMoa043330
  41. Tanaka R, Kim CH, Yamada N, Saito Y (1987). Radiofrequency hyperthermia for malignant brain tumors: preliminary results of clinical trials. Neurosurgery, 21, 478-83. https://doi.org/10.1227/00006123-198710000-00007
  42. Thomas LR, Henson A, Reed JC, Salsbury FR, Thorburn A (2004). Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD. J Biol Chem, 279, 32780-5. https://doi.org/10.1074/jbc.M401680200
  43. Tulapurkar ME, Asiegbu BE, Singh IS, Hasday JD (2009). Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells. Cell Stress Chaperones, 14, 499-508. https://doi.org/10.1007/s12192-009-0103-3
  44. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996). Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science, 274, 787-9. https://doi.org/10.1126/science.274.5288.787
  45. van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, et al (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet, 355, 1119-25. https://doi.org/10.1016/S0140-6736(00)02059-6
  46. Venkataraman S, Wagner BA, Jiang X, et al (2004). Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia. Free Radic Res, 38, 1119-32. https://doi.org/10.1080/10715760400010470
  47. Vernon CC, Hand JW, Field SB, et al (1996). Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys, 35, 731-44. https://doi.org/10.1016/0360-3016(96)00154-X
  48. Walczak H, Miller RE, Ariail K, et al (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med, 5, 157-163. https://doi.org/10.1038/5517
  49. Wang CY, Mayo MW, Baldwin AS (1996). Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science, 274, 784-787. https://doi.org/10.1126/science.274.5288.784
  50. Wong HR, Ryan M, Gebb S, Wispe JR (1997). Selective and transient in vitro effects of heat shock on alveolar type II cell gene expression. Am J Physiol, 272, L132-8.
  51. Yamaguchi S, Tanabe K, Takai S, et al (2009). Involvement of Rho-kinase in tumor necrosis factor-ainduced interleukin-6 release from C6 glioma cells. Nerochem Int, 55, 438-45. https://doi.org/10.1016/j.neuint.2009.04.016
  52. Yoo J, Lee Y (2007). Effect of hyperthermia on TRAIL-induced apoptotic death in human colon cancer cells: development of a novel strategy for regional therapy. J Cell Biochem, 101, 619-30. https://doi.org/10.1002/jcb.21203
  53. Yoo L, Lee Y (2008). Effect of hyperthermia and chemotherapeutic agents on TRAIL-induced cell death in human colon cancer cells. J Cell Biochem, 103, 98-109. https://doi.org/10.1002/jcb.21389
  54. Zhang B-C, Li Q, Ye J (2004). Role of p38MAKP in mediating TNF-induced apoptosis of rat glioma cell line C6. Journal of Medical Colleges of PLA, 18, 308-11.
  55. Zhang X, Chen T, Zhang J, et al (2012). Notch1 promotes glioma cell migration and invasion by stimulating $\beta$-catenin and NF-${\kappa}B$ signaling via AKT activation. Cancer Sci, 103, 181-90. https://doi.org/10.1111/j.1349-7006.2011.02154.x

Cited by

  1. Effect of Bcl-2 on Apoptosis and Transcription Factor NF-κB Activation Induced by Adriamycin in Bladder Carcinoma BIU87 Cells vol.14, pp.4, 2013, https://doi.org/10.7314/APJCP.2013.14.4.2387
  2. Effects of Thermotherapy on Th1/Th2 Cells in Esophageal Cancer Patients Treated with Radiotherapy vol.15, pp.5, 2014, https://doi.org/10.7314/APJCP.2014.15.5.2359
  3. Therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia using Fe2O3 nanoparticles vol.47, pp.11, 2014, https://doi.org/10.1590/1414-431X20143808
  4. Approach for an improved experimental evaluation of the specific absorption rate in magnetic fluid hyperthermia vol.17, pp.4, 2015, https://doi.org/10.1007/s11051-015-2997-2
  5. live tracking vol.4, pp.1, 2016, https://doi.org/10.1080/21688370.2015.1129476
  6. Differences between brainstem gliomas in juvenile and adult rats vol.6, pp.1, 2013, https://doi.org/10.3892/ol.2013.1319
  7. Antitumor effects of high-temperature hyperthermia on a glioma rat model vol.7, pp.4, 2014, https://doi.org/10.3892/ol.2014.1852
  8. Interleukin-16 Polymorphism Is Associated with an Increased Risk of Glioma vol.18, pp.10, 2014, https://doi.org/10.1089/gtmb.2014.0170
  9. Hyperthermia with different temperatures inhibits proliferation and promotes apoptosis through the EGFR/STAT3 pathway in C6 rat glioma cells vol.16, pp.6, 2017, https://doi.org/10.3892/mmr.2017.7769