Comparative Evaluation of Cardiac Output using Echocardiography in Beagle Dogs

비글견에서 심초음파를 이용한 심박출량 측정에 관한 비교 연구

  • Park, Kitae (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Yeon, Seongchan (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Heechun (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • 박기태 (경상대학교 생명과학연구원) ;
  • 연성찬 (경상대학교 생명과학연구원) ;
  • 이희천 (경상대학교 생명과학연구원)
  • Accepted : 2012.10.17
  • Published : 2012.10.31

Abstract

Echocardiographic measurements of cardiac output, including the modified Simpson's method, Automated Contour Tracking(ACT) method, and left ventricular outflow method are well described methods of evaluating cardiac function due to its reliability and the benefits of its non-invasive technique in human medicine. The purpose of this study was to evaluate the accuracy of an echocardiography estimate of cardiac output in isoflurane-anesthetized beagle dogs and was to compare the ACT method to the other methods used in measurement of cardiac output. In healthy beagle dogs, cardiac output results by echocardiography estimate methods showed an excellent correlations with those by the thermodilution method (The modified Simpson's method : r = 0.815, $r^2=0.665$, y = 0.434x + 0.311 ; ACT method : r = 0.86, $r^2=0.748$, y = 0.391x + 0.242 ; ventricular outflow method : r = 0.691, $r^2=0.478$, y = 0.593x + 0.242). Among the results obtained, the ACT method showed the highest correlation coefficient. In conclusion, our study demonstrated that echocardiography estimate methods did not prove to be suitable in accurately measuring absolute cardiac output values but showed an excellent correlation with thermodilution method. Therefore, by using the measurement of cardiac output as supplemental data, echocardiography estimate methods can be used for detection and correction of hemodynamic disturbances during emergency and anesthesia in veterinary practice.

본 연구는 심초음파를 이용한 심박출량 측정의 정확성을 평가하고, 수의학에서 심박출량 측정을 위해 처음 적용되는 Automated Contour Tracking method (ACT method)와 다른 심초음파 측정 방법간의 비교를 위한 목적으로 실시되었다. 따라서 본 연구에서는 흡입마취된 비글견에서 심초음파를 이용한 세가지 심박출량 측정 방법 (modified Simpson's method, left ventricular outflow method 그리고 ACT method)과 절대적 표준법으로 사용되어 오고 있는 열희석법의 성적을 비교 분석하였다. 결과의 검정은 피어슨 상관계수와 선형 회귀 분석법을 사용하였다. 실험에 사용된 실험견은 심혈관계 및 전신상태에 이상이 없는 10마리 비글견이며 호흡마취 유도하에 평가가 실시되었다. 실험은 심초음파법으로 측정한 다음 연이어 열희석법으로 측정하는 순서로 진행되었다. 세 가지 심초음파 측정법들은 모두 열 희석법과 유의적인 상관관계(p < 0.05)에 있음을 알 수 있었고 특히, 세 가지 방법 중에서는 ACT method에서 상관관계가 가장 높음을 확인할 수 있었다. 본 실험에서 심초음파를 이용한 심박출량 측정법은 절대적인 심박출량을 제시하지 못하였다. 하지만 심박출량 측정의 절대적 표준법으로 사용되는 열희석법과 유의적인 상관관계가 있음이 확인 되었으므로 심박출량의 간접적인 정보로 활용함으로써 환자의 마취시에 발생할 수 있는 혈역학적 장애의 발견이나 교정을 위해서 유용하게 사용될 수 있음을 확인하였다.

Keywords

References

  1. Abbott JA, MacLean HN. Comparison of Doppler-derived peak aortic velocities obtained from subcostal and apical transducer sites in healthy dogs. Vet Radiol Ultrasound 2003; 44: 695-698. https://doi.org/10.1111/j.1740-8261.2003.tb00533.x
  2. Beaulieu KE, Kerr CL, McDonel WN. Evaluation of a lithium dilution cardiac output technique as a method for measurement of cardiac output in anesthetized cats. Am J Vet Res 2005; 66: 1639-1645. https://doi.org/10.2460/ajvr.2005.66.1639
  3. Boon JA. Evaluation of size, function and hemodynamics. In: Manual of veterinary echocardiography, 1st ed, Blackwell publishing: Oxford 2006 : 193-195.
  4. Boulnois JL, Pechoux T. Non-invasive cardiac output monitoring by aortic blood flow measurement with the Dynemo 3000. J Clin Monit Comput 2000; 16: 127-140. https://doi.org/10.1023/A:1009902517388
  5. Chan JS, Segara D, Nair P. Measurement of cardiac output with a non-invasive continuous wave Doppler device versus the pulmonary artery catheter: a comparative study. Crit Care Resusc 2006; 8: 309-314.
  6. Cholley BP, Payen D. Noninvasive techniques for measurements of cardiac output. Curr Opin Crit Care 2005; 11: 424-429. https://doi.org/10.1097/01.ccx.0000176698.51456.5a
  7. Chuang ML, Hibberd MG, Salton CJ, Beaudin RA, Riley MF, Parker RA, Douglas PS, Manning WJ. Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 2000; 35: 477-484. https://doi.org/10.1016/S0735-1097(99)00551-3
  8. Critchley LA, Peng ZY, Fok BS, Lee A, Phillips RA. Testing the reliability of a new ultrasonic cardiac output monitor, the USCOM, by using aortic flow probes in anesthetized dogs. Anesth Analg 2005; 100: 748-753. https://doi.org/10.1213/01.ANE.0000144774.42408.05
  9. Elkayam U, Berkley R, Azen S, Weber L, Geva B, Henry WL. Cardiac output by thermodilution technique. Effect of injectate's volume and temperature on accuracy and reproducibility in the critically ill patient. Chest 1983; 84: 418-422. https://doi.org/10.1378/chest.84.4.418
  10. Feigenbaum H. Echocardiography. 4th ed, Lea & Febiger: Philadelphia 1986: 121-130.
  11. Geiser EA, Skortori DJ, Conetta DA. Quantification of left ventricular function by two-dimensional echocardiography: consideration of factors restricting image quality. Am Heart J 1982; 103: 905-910. https://doi.org/10.1016/0002-8703(82)90406-9
  12. Gordon EP, Schnittger I, Fitzgerald PJ, Williams P, Popp RL. Reproducibility of left ventricular volumes by two-dimensional echocardiography. J Am Coll Cardiol 1983; 2: 506-513. https://doi.org/10.1016/S0735-1097(83)80278-2
  13. Haites NE, McLennan FM, Mowat DH, Rawles JM. Assessment of cardiac output by the Doppler ultrasound technique alone. Br Heart J 1985; 53: 123-129. https://doi.org/10.1136/hrt.53.2.123
  14. Hofer CK, Ganter MT, Zollinger A. What technique should I use to measure cardiac output? Curr Opin Crit Care 2007; 13: 308-317. https://doi.org/10.1097/MCC.0b013e3280c56afb
  15. Hozumi T, Yoshida K, Yoshioka H, Yagi T, Akasaka T, Takasi T, Nishiura M, Watanabe M. and Yoshikawa J. Echocardiographic estimation of left ventricular cavity area with a newly developed automated contour tracking method. J Am Soc Echocardiogr 1997; 10: 822-829. https://doi.org/10.1016/S0894-7317(97)70042-7
  16. Ihlen H, Amlie JP, Dale J, Forfang K, Nitter-hauge S, Otterstad JE, Simonsen S, Myhre E. Determination of cardiac output by Doppler echocardiography. Br Heart J 1984; 51: 54-60. https://doi.org/10.1136/hrt.51.1.54
  17. Jansen JR. The thermodilution method for the clinical assessment of cardiac output. Intensive Care Med 1995; 21: 691-669. https://doi.org/10.1007/BF01711553
  18. Kienle RD, Thomas WP. Echocardiography. In: Small animal diagnostic ultrasound, 2nd ed, Saunders: Philadelphia 2002:368.
  19. Kusumoto F, Venet T, Schiller NB, Sebastian A, Foster E. Measurement of aortic blood flow by Doppler echocardiography: temporal, technician, and reader variability in normal subjects and the application of generalizability theory in clinical research. J Am Soc Echocardiogr 1995; 8: 647-653. https://doi.org/10.1016/S0894-7317(05)80378-5
  20. Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation 1984; 70: 425-431. https://doi.org/10.1161/01.CIR.70.3.425
  21. Nishikawa T, Dohi S. Errors in the measurement of cardiac output by thermodilution. Can J Anaesth 1993; 40: 142-153. https://doi.org/10.1007/BF03011312
  22. Otterstad JE, Froeland G, St John Sutton M, Holme I. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J 1997; 18: 507-513. https://doi.org/10.1093/oxfordjournals.eurheartj.a015273
  23. Pearl RG, Rosenthal MH, Nielson L, Ashton JP, Brown BW. Effect of injectate volume and temperature on thermodilution cardiac output determination. Anesthesiology 1986; 64: 798-801. https://doi.org/10.1097/00000542-198606000-00021
  24. Rezende ML, Pypendop BH, Ilkiw JE. Evaluation of transesophageal echo-Doppler ultrasonography for the measurement of aortic blood flow in anesthetized cats. Am J Vet Res 2008; 69: 1135-1140. https://doi.org/10.2460/ajvr.69.9.1135
  25. Scansen BA, Bonagura JD, Schober KE, Muir WW. Evaluation of a commercial ultrasonographic hemodynamic recording system for the measurement of cardiac output in dogs. Am J Vet Res 2009; 70: 862-868. https://doi.org/10.2460/ajvr.70.7.862
  26. Slama M, Susic D, Varagic J, Ahn J, Frohlich ED. Echocardiographic measurement of cardiac output in rats. Am J Physiol Heart Circ Physiol 2003; 284: 691-697. https://doi.org/10.1152/ajpheart.00653.2002
  27. Sugioka K, Hozumi T, Yagi T, Yamamuro A, Akasaka T, Takeuchi K, Homma S, Yishida K, Yoshikawa J. Automated quantification of left ventricular function by the automated contour tracking method. Echocardiography 2003; 20: 313-318. https://doi.org/10.1046/j.1540-8175.2003.03036.x
  28. Weyman AE. Principles and practice of echocardiography, 2nd ed, Lea & Febriger: Philadelphia 1994: 256-261.
  29. Yamashita K, Ueyama Y, Miyoshi K, Igarashi R, Kushiro T, Umar MA, Muir WW. Minimally invasive determination of cardiac output by transthoracic bioimpedance, partial carbon dioxide rebreathing, and transesophageal Doppler echocardiography in beagle dogs. J Vet Med Sci 2007; 69: 43-47. https://doi.org/10.1292/jvms.69.43