DOI QR코드

DOI QR Code

Effects of Soil-Plant Interactive System on Response to Exposure to ZnO Nanoparticles

  • Lee, Sooyeon (Division of EcoScience, Ewha Womans University) ;
  • Kim, Saeyeon (Division of EcoScience, Ewha Womans University) ;
  • Kim, Sunghyun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Insook (Division of EcoScience, Ewha Womans University)
  • Received : 2012.03.02
  • Accepted : 2012.04.24
  • Published : 2012.09.28

Abstract

The ecotoxicological effects of nanomaterials on animal, plant, and soil microorganisms have been widely investigated; however, the nanotoxic effects of plant-soil interactive systems are still largely unknown. In the present study, the effects of ZnO nanoparticles (NPs) on the soil-plant interactive system were estimated. The growth of plant seedlings in the presence of different concentrations of ZnO NPs within microcosm soil (M) and natural soil (NS) was compared. Changes in dehydrogenase activity (DHA) and soil bacterial community diversity were estimated based on the microcosm with plants (M+P) and microcosm without plants (M-P) in different concentrations of ZnO NPs treatment. The shoot growth of M+P and NS+P was significantly inhibited by 24% and 31.5% relative to the control at a ZnO NPs concentration of 1,000 mg/kg. The DHA levels decreased following increased ZnO NPs concentration. Specifically, these levels were significantly reduced from 100 mg/kg in M-P and only 1,000 mg/kg in M+P. Different clustering groups of M+P and M-P were observed in the principal component analysis (PCA). Therefore, the M-P's soil bacterial population may have more toxic effects at a high dose of ZnO NPs than M+P's. The plant and activation of soil bacteria in the M+P may have a less toxic interactive effect on each of the soil bacterial populations and plant growth by the ZnO NPs attachment or absorption of plant roots surface. The soil-plant interactive system might help decrease the toxic effects of ZnO NPs on the rhizobacteria population.

Keywords

References

  1. Brunner, T. J., P. Wicker, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruninik, and W. J. Stark 2006. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40: 4374-4381. https://doi.org/10.1021/es052069i
  2. Colvin, V. L. 2003. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21: 1116-1170. https://doi.org/10.1038/nbt881
  3. de Lipthay, J. R., K. Johnsen, H. J. Albrechtsen, P. Rosenberg, and J. Aamand. 2004. Bacterial diversity and community structure of a sub-surface aquifer exposed to realistic low herbicide concentrations. FEMS Microbiol. Ecol. 49: 59-69. https://doi.org/10.1016/j.femsec.2004.02.007
  4. Ge, Y., J. P. Schimel, and P. A. Holden. 2011. Evidence for negative effects of $TiO_2$ and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 45: 1659-1664. https://doi.org/10.1021/es103040t
  5. Griffiths, B. S., K. Ritz, N. Ebblewhite, and G. Dobson. 1999. Microbial community dynamics associated with rhizosphere carbon flow. Soil Biol. Biochem. 31: 145-153.
  6. Gottschalk, F., T. Sonderer, R. W. Scolz, and B. Nowack. 2009. Modelled environmental concentrations of engineered nanomaterials ($TiO_2$, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43: 9216-9222. https://doi.org/10.1021/es9015553
  7. Huang, Z., X. Zheng, D. Yan, G. Yin, X. Liao, Y. Kang, Y. Yao, D. Huang, and B. Hao. 2008. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24: 4140-4144. https://doi.org/10.1021/la7035949
  8. Klaine, S. J., P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, et al. 2008. Nanomaterials in the environment: Behaviour, fate, bioavailability, and effects. Environ. Sci. Technol. 27: 1825-1851.
  9. Kim, S., S. Y. Lee, and I. S. Lee 2012. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Wat. Air Soil Pollut. DOI: 10.1007/s11270-011-1067-3.
  10. Kumar, N., V. Shah, and V. K. Walker. 2011. Influence of nanoparticle mixture on an arctic soil community. Nanomat. Environ. 31: 131-135.
  11. Lee, W. M., Y. J. An, H. Yoon, and H. S. Kweon. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiates) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 27: 1915-1921. https://doi.org/10.1897/07-481.1
  12. Lee, C. W., S. Mahendera, K. Zodrow, D. Li, Y. C. Tsai, J. Braam, and P. J. J Alvarez. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 29: 669-675. https://doi.org/10.1002/etc.58
  13. Lin, D. and B. Xing. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 20: 1-8.
  14. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522.
  15. Manzo, S., A. Rocco, R. Carotenuto, F. de Luca Picione, M. L. Miglietta, G. Rametta, and G. D. Francia. 2011. Investigation of ZnO nanoparticles' ecotoxicological effects towards different soil organisms. Environ. Sci. Pollut. Res. 18: 756-763. https://doi.org/10.1007/s11356-010-0421-0
  16. Mishra, V. K. and A. Kumar. 2009. Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig. J. Nanomat. Biostruc. 4: 587-592.
  17. Nannipieri, P., E. Kandeler, and P. Ruggiero. 2002. Enzyme activities and microbiological and biochemical processes in soil, pp. 1-33. In R. G. Burns and R. P. Dick (eds.). Enzymes in the Environment. Activity, Ecology and Applications. Marcel Dekker, NY.
  18. Neal, A. L. 2008. What can be inferred from bacteriumnanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17: 362-371. https://doi.org/10.1007/s10646-008-0217-x
  19. Nel, A., T. Xia, L. Moedler, and N. Li. 2006. Toxic potential of materials at nanolevel. Science 311: 622-627. https://doi.org/10.1126/science.1114397
  20. Puglisi, E., A. A. M. Del Re, M. A. Rao, and L. Gianfreda. 2006. Development and validation of numerical indexes integrating enzyme activites of soils. Soil Biol. Biochem. 38: 1673-1681. https://doi.org/10.1016/j.soilbio.2005.11.021
  21. Roco, M. C. 2003. Nanotechnology: Convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14: 337-346. https://doi.org/10.1016/S0958-1669(03)00068-5
  22. Service, R. F. 2008. Science policy: Report faults U.S. strategy for nanotoxicology research. Science 322: 1779.
  23. Shannon, C. E. and W. Weaver. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
  24. Sukul, P. 2006. Enzymatic activities and microbial biomass in soil as influenced by metalaxy residues. Soil Biol. Biochem. 38: 320-326. https://doi.org/10.1016/j.soilbio.2005.05.009
  25. Tabatabai, M. A. 1982. Agronomy monograph, pp. 903-904. In A. L. Page (ed.). Soil Enzymes. In: Methods of Soil Analysis, Part 2. American Society of Agronomy, Madison, WI.
  26. Tong, Z., M. Bischoff, L. Nies, B. Applegate, and R. F. Turco. 2007. Impact of fullerene (C60) on a soil microbial community. Environ. Sci. Technol. 41: 2985-2991. https://doi.org/10.1021/es061953l
  27. USEPA. 2007. Nanotechnology white paper. 100/B-07/001. http://www.epa.gov/osa/pdfs/nanotech/epa-nanotechnology-whitepaper-0207.pdf.
  28. Xue, D., H. Y. Yao, Y. Ge De, and C. Y. Huang. 2008. Soil microbial community structure in diverse land use systems: A comparative study using biology, DGGE, and PLFA analyses. Pedosphere 18: 653-663. https://doi.org/10.1016/S1002-0160(08)60060-0
  29. Zhang, L., Y. Jiang, Y. Ding, M. Povey, and D. York. 2007. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9: 479-489. https://doi.org/10.1007/s11051-006-9150-1
  30. Zhu, H., J. Han, J. O. Xizo, and Y. Jin. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10: 713-717. https://doi.org/10.1039/b805998e

Cited by

  1. Influence of Metal Oxide Particles on Soil Enzyme Activity and Bioaccumulation of Two Plants vol.23, pp.9, 2012, https://doi.org/10.4014/jmb.1304.04084
  2. Myconanoparticles: synthesis and their role in phytopathogens management vol.29, pp.2, 2012, https://doi.org/10.1080/13102818.2015.1008194
  3. Nanoparticles based on essential metals and their phytotoxicity vol.15, pp.None, 2012, https://doi.org/10.1186/s12951-017-0268-3
  4. Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst vol.28, pp.6, 2012, https://doi.org/10.4014/jmb.1712.12057
  5. Phytotoxicity of colloidal solutions of stabilized and non-stabilized nanoparticles of essential metals and their oxides vol.18, pp.1, 2012, https://doi.org/10.2478/nbec-2019-0001
  6. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review vol.10, pp.9, 2012, https://doi.org/10.3390/biology10090881
  7. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity vol.288, pp.p2, 2012, https://doi.org/10.1016/j.chemosphere.2021.132533