References
- Alquati, C., L. Gioia, G. Santarossa, L. Alberghina, P. Fantucci, and M. Lotti. 2002. The cold-adapted lipase of Pseudomonas fragi: Heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem. 269: 3321-3328. https://doi.org/10.1046/j.1432-1033.2002.03012.x
- Bornscheuer, U. T. 2002. Microbial carboxylesterases: Classification, properties and applications in biocatalysis. FEMS Microbiol. Rev. 26: 73-81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
- Breuil, C. and D. J. Kushner. 1974. Partial purification and characterization of the lipase of a facultatively psychrophilic bacterium (Acinetobacter O16). Can. J. Microbiol. 21: 434-441.
- Chen, S., C. Cheng, and T. Chen. 1998. Production of an alkaline lipase by Acinetobacter radioresistens. Biotechnol. Bioeng. 62: 311-316.
- Choo, D. W., T. Kurihara, T. Suzuki, K. Soda, and N. Esaki. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
- De Santi, C., M. L. Tutino, L. Mandrich, M. Giuliani, E. Parrilli, P. Del Vecchio, and D. de Pascale. 2010. The hormonesensitive lipase from Psychrobacter sp. TA144: New insight in the structural/functional characterization. Biochimie 92: 949-957. https://doi.org/10.1016/j.biochi.2010.04.001
- Dharmsthiti, S., J. Pratuangdejkul, G. Theeragool, and S. Luchai. 1998. Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. J. Gen. Appl. Microbiol. 44: 139-145. https://doi.org/10.2323/jgam.44.139
- Dieckelmann, M., L. A. Johnson, and I. R. Beacham. 1998. The diversity of lipases from psychrotrophic strains of Pseudomonas: A novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. J. Appl. Microbiol. 85: 527-536. https://doi.org/10.1046/j.1365-2672.1998.853530.x
- Feller, G., E. Narinx, J. L. Arpigny, M. Aittaleb, E. Baise, S. Geniot, and C. Gerday. 1996. Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 18: 189-202. https://doi.org/10.1111/j.1574-6976.1996.tb00236.x
- Grochulski, P., Y. Li, J. D. Schrag, F. Bouthillier, P. Smith, D. Harrison, B. Rubin, and M. Cygler. 1993. Insights into interfacial activation from an open structure of Candida rugosa lipase. J. Biol. Chem. 268: 12843-12847.
- Hasan, F., A. A. Shah, and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
- Jaeger, K. E., B. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysis: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
-
Kim, H. K., H. J. Choi, M. H. Kim, C. B. Sohn, and T. K. Oh. 2002. Expression and characterization of
$Ca^{2+}$ -independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212. https://doi.org/10.1016/S1388-1981(02)00214-7 - Kim, H. E. and K. R. Kim. 2002. Purification and characterization of an esterase from Acinetobacter lwoffii 16C-1. Curr. Microbiol. 44: 401-405. https://doi.org/10.1007/s00284-001-0008-6
- Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 86: 1059-1070. https://doi.org/10.1016/j.fuproc.2004.11.002
- Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active esterase from Psychrobacter sp. Ant300: Gene cloning, characterization, and the effects of GlyPro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65. https://doi.org/10.1016/j.bbapap.2003.09.008
- Lang, D., B. Hofmann, L. Haalack, H. J. Hecht, F. Spener, R. D. Schmid, and D. Schomburg. 1996. Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution. J. Mol. Biol. 259: 704-717. https://doi.org/10.1006/jmbi.1996.0352
- Margesin, R. 2007. Alpine microorganisms: Useful tools for low-temperature bioremediation. J. Microbiol. 45: 281-285.
- Martinez, C., A. Nicolas, H. van Tilbeurgh, M. P. Egloff, C. Cudrey, R. Verger, and C. Cambillau. 1994. Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33: 83-89. https://doi.org/10.1021/bi00167a011
- Park, I. H., S. H. Kim, Y. S. Lee, S. C. Lee, Y. Zhou, C. M. Kim, et al. 2009. Gene cloning, purification, and characterization of a cold-adapted lipase produced by Acinetobacter baumannii BD5. J. Microbiol. Biotechnol. 19: 128-135. https://doi.org/10.4014/jmb.0802.130
- Ryu, H. S., H. K. Kim, W. C. Choi, M. H. Kim, S. Y. Park, N. S. Han, et al. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326. https://doi.org/10.1007/s00253-005-0058-y
- Saito, H. and K. I. Miura. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta. 72: 619-629. https://doi.org/10.1016/0926-6550(63)90386-4
- Schmidt, R. D. and R. Verger. 1998. Lipases; interfacial enzymes with attractive applications. Angew Chem. Int. Ed. Engl. 37: 1608-1633. https://doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V
- Schlatmann, J., R. M. Aires-barros, and S. M. J. Cabral. 1991. Esterification of short chain organic acids with alcohols by a lipase microencapsulated in reversed micelles. Biocatal. Biotransform. 5: 137-144. https://doi.org/10.3109/10242429109014862
- Suzuki, T., T. Nakayama, D. W. Choo, Y. Hirano, T. Kurihara, T. Nishino, and N. Esaki. 2003. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr. Purif. 30: 171-178. https://doi.org/10.1016/S1046-5928(03)00128-1
- Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2002. Primary structure and catalytic properties of a cold-active esterase from a psychrotroph, Acinetobacter sp. strain no. 6 isolated from Siberian soil. Biosci. Biotechnol. Biochem. 66: 1682-1690. https://doi.org/10.1271/bbb.66.1682
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Villeneuve, P., J. M. Muderhwa, J. Graille, and M. J. Haas. 2000. Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B Enzym. 9: 113-148. https://doi.org/10.1016/S1381-1177(99)00107-1
- Yang, X., X. Lin, T. Fan, J. Bian, and X. Huang. 2008. Cloning and expression of lipP, a gene encoding a cold-adapted lipase from Moritella sp. 2-5-10-1. Curr. Microbiol. 56: 194-198. https://doi.org/10.1007/s00284-007-9051-2
- Zheng, X., X. Chu, W. Zhang, N. Wu, and Y. Fan. 2011. A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: Gene cloning and characterization. Appl. Microbiol. Biotechnol. 90: 971-980. https://doi.org/10.1007/s00253-011-3154-1
Cited by
- Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes vol.7, pp.None, 2012, https://doi.org/10.3389/fmicb.2016.01408
- Genomic and phenotypic characterization of the species Acinetobacter venetianus vol.6, pp.None, 2016, https://doi.org/10.1038/srep21985
- Acinetobacter pittii, an emerging new multi-drug resistant fish pathogen isolated from diseased blunt snout bream (Megalobrama amblycephala Yih) in China vol.101, pp.16, 2012, https://doi.org/10.1007/s00253-017-8392-4
- Purification and characterization of a mesophilic organic solvent tolerant lipase produced by Acinetobacter sp. K5b4 vol.37, pp.2, 2019, https://doi.org/10.1080/10242422.2018.1506445