References
-
Aoki, T., T. Araki, and M. Kitamikado. 1990. Purification and characterization of a novel
${\beta}$ -agarase from Vibrio sp. AP-2. Eur. J. Biochem. 187: 461-465. https://doi.org/10.1111/j.1432-1033.1990.tb15326.x - Araki, T., M. Hayakawa, Z. Lu, S. Karita, and T. Morishita. 1998. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J. Marine Biotechnol. 6: 260-265.
- Ajisaka, K., S. Agawa, S. Nagumo, K. Kurato, T. Yokoyama, K. Arai, and T. Miyazaki. 2009. Evaluation and comparison of the antioxidative potency of various carbohydrates using different methods. J. Agric. Food Chem. 57: 3102-3107. https://doi.org/10.1021/jf804020u
- Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523. https://doi.org/10.1093/nar/7.6.1513
- Buttner, M. J., I. M. Fearnley, and M. J. Bibb. 1987. The agarase gene (dagA) of Streptomyces coelicolor A3 (2): Nucleotide sequence and transcriptional analysis. Mol. Gen. Genet. 209: 101-109. https://doi.org/10.1007/BF00329843
- Chen, H. M. and X. J. Yan. 2005. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system. Biochim. Biophys. Acta 1722: 103-111. https://doi.org/10.1016/j.bbagen.2004.11.016
- Chen, H., X. Yan, P. Zhu, and J. Lin. 2006. Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutr. J. 31: 1-12.
- Ekborg, N. A., L. E. Taylor, A. G. Longmire, B. Henrissat, R. M. Weiner, and S. W. Hutcheson. 2006. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl. Environment. Microbiol. 72: 3396-3405. https://doi.org/10.1128/AEM.72.5.3396-3405.2006
- Fu, W., B. Han, D. Duan, W. Liu, and C. Wang. 2008. Purification and characterization of agarases from a marine bacterium Vibrio sp. F-6. J. Ind. Microbiol. Biotechnol. 35: 915-922. https://doi.org/10.1007/s10295-008-0365-2
- Hosoda, A., M. Sakai, and S. Kanazawa. 2003. Isolation and characterization of agar-degrading Paenibacillus spp. associated with the rhizosphere of spinach. Biosci. Biotechnol. Biochem. 67: 1048-1055. https://doi.org/10.1271/bbb.67.1048
-
Joon, Y., C. R. Han, W. C. Kim, D. Y. Jun, I. K. Rhee, and Y. H. Kim. 2010. Isolation of a novel freshwater agarolytic Cellvibrio sp. KY-YJ-3 and characterization of its extracellular
${\beta}$ -agarase. J. Microbiol. Biotechnol. 20: 1378-1385. https://doi.org/10.4014/jmb.1007.07010 - Kidby, D. K. and D. J. Davidson. 1973. A convenient ferricyanide estimation of reducing sugars in the nanomole range. Anal. Biochem. 55: 321-325. https://doi.org/10.1016/0003-2697(73)90323-0
- Kobayashi, R., M. Takisada, T. Suzuki, K. Kirimura, and S. Usami. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163. https://doi.org/10.1271/bbb.61.162
- Lee, D. G., M. K. Jang, O. H. Lee, N. Y. Kim, S. A. Ju, and S. H. Lee. 2008. Over-production of a glycoside hydrolase family 50 beta-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnol. Lett. 30: 911-918. https://doi.org/10.1007/s10529-008-9634-4
- Mergaert, J., D. Lednicka, J. Goris, M. C. Cnockaert, P. D. Vos, and J. Swings. 2003. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int. J. Syst. Evol. Microbiol. 53: 465-471. https://doi.org/10.1099/ijs.0.02316-0
- Meulen, H. J., W. Harder, and H. Veldkamp. 1975. Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie Van Leeuwenhoek 41: 431-447. https://doi.org/10.1007/BF02565087
- Ohta, Y., Y. Hatada, Y. Nogi, Z. Li, S. Ito, and K. Horikoshi. 2004. Cloning, expression, and characterization of a glycoside hydrolase family 86 beta-agarase from a deep-sea Microbulbiferlike isolate. Appl. Microbiol. Biotechnol. 66: 266-275. https://doi.org/10.1007/s00253-004-1757-5
- Pell, G., L. Szabo, S. J. Charnock, H. Xie, T. M. Gloster, G. J. Davies, and H. J. Gilbert. 2004. Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: How variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. J. Biol. Chem. 279: 11777-11788. https://doi.org/10.1074/jbc.M311947200
- Saito, H. and K. I. Miura. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72: 619-629. https://doi.org/10.1016/0926-6550(63)90386-4
- Sambrook, J., E. F. Frisch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Sugano, Y., I. Terada, M. Arita, M. Noma, and T. Matsumoto. 1993. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 1549-1554.
- Sugano, Y., T. Matsumoto, H. Kodama, and M. Noma. 1993. Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 3750-3756.
- Wynne, E. C. and J. M. Pemberton. 1986. Cloning of a gene cluster from Cellvibrio mixtus which codes for cellulase, chitinase, amylase, and pectinase. Appl. Environ. Microbiol. 52: 1362-1367.
- Xiao, T. F., L. Hong, and S. M. Kim. 2008. Purification and characterization of a novel b-agarase, AgaA34, from Agarivorans albus YKW-34. Appl. Microbiol. Biotechnol. 78: 265-273. https://doi.org/10.1007/s00253-007-1303-3
- Zhang, W. W. and L. Sun. 2007. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825-2831. https://doi.org/10.1128/AEM.02872-06
- Zhong, Z., A. Toukdarian, D. Helinski, V. Knauf, S. Sykes, J. E. Wilkinson, et al. 2001. Sequence analysis of a 101-kilobase plasmid required for agar degradation by a Microscilla isolate. Appl. Environ. Microbiol. 67: 5771-5779. https://doi.org/10.1128/AEM.67.12.5771-5779.2001
Cited by
-
Purification and Characterization of
${\alpha}$ -Neoagarooligosaccharide Hydrolase from Cellvibrio sp. OA-2007 vol.24, pp.1, 2012, https://doi.org/10.4014/jmb.1307.07018 - Draft Genome Sequence of the Nonmarine Agarolytic Bacterium Cellvibrio sp. OA-2007 vol.3, pp.3, 2012, https://doi.org/10.1128/genomea.00468-15
- 분리된 Simiduia sp. SH-4가 생산하는 β-agarase의 특성조사 vol.26, pp.4, 2016, https://doi.org/10.5352/jls.2016.26.4.453
- Isolation and Characterization of a Glycosyl Hydrolase Family 16 β-Agarase from a Mangrove Soil Metagenomic Library vol.17, pp.8, 2012, https://doi.org/10.3390/ijms17081360
- Expression and Characterization of a Novel Thermostable and pH-Stable β-Agarase from Deep-Sea Bacterium Flammeovirga Sp. OC4 vol.64, pp.38, 2012, https://doi.org/10.1021/acs.jafc.6b02998
- Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7 vol.101, pp.5, 2012, https://doi.org/10.1007/s00253-016-7951-4
- Agarolytic bacterium Persicobacter sp. CCB ‐ QB 2 exhibited a diauxic growth involving galactose utilization pathway vol.6, pp.1, 2012, https://doi.org/10.1002/mbo3.405
- Characterization of an α-agarase from Thalassomonas sp. LD5 and its hydrolysate vol.102, pp.5, 2012, https://doi.org/10.1007/s00253-018-8762-6
- Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7 vol.28, pp.2, 2012, https://doi.org/10.4014/jmb.1710.10011
- Recombinant β-agarases: insights into molecular, biochemical, and physiochemical characteristics vol.8, pp.10, 2012, https://doi.org/10.1007/s13205-018-1470-1
- Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-03366-x
- 한천분해효소의 재조합발현 : 기원, 활성조건, 분비신호와 게놈분석 등 vol.30, pp.3, 2012, https://doi.org/10.5352/jls.2020.30.3.304
- Expression and Characterization of a Methylated Galactose-Accommodating GH86 β-Agarase from a Marine Bacterium vol.68, pp.29, 2020, https://doi.org/10.1021/acs.jafc.0c02672
- A Novel Auxiliary Agarolytic Pathway Expands Metabolic Versatility in the Agar-Degrading Marine Bacterium Colwellia echini A3 T vol.87, pp.12, 2021, https://doi.org/10.1128/aem.00230-21