References
- Cane, D. E. and C. C. Yang. 1984. Biosynthetic origin of the carbon skeleton and oxygen atoms of nargenicin A1. J. Am. Chem. Soc. 106: 784-787. https://doi.org/10.1021/ja00315a052
- Celmer, W. D., G. N. Chmurny, C. E. Moppett, R. S. Ware, P. C. Watts, and E. B. Whipple. 1980. Structure of natural antibiotic CP-47,444. J. Am. Chem. Soc. 102: 4203-4209. https://doi.org/10.1021/ja00532a036
- Chan, Y. A., A. M. Podevels, B. M. Kevany, and M. G. Thomas. 2009. Biosynthesis of polyketide synthase extender units. Nat. Prod. Rep. 26: 90-114. https://doi.org/10.1039/b801658p
- Cho, S. S., J. K. Sohng, H. J. Lee, S. J. Park, J. R. Simkhada, and J. C. Yoo. 2009. Quantitative analysis of nargenicin in Nocardia sp. CS682 culture by high performance liquid chromatography. Arch. Pharm. Res. 32: 335-340. https://doi.org/10.1007/s12272-009-1304-0
- Gunnarsson, N., A. Eliasson, and J. Nielsen. 2004. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics. Adv. Biochem. Eng. Biotechnol. 88: 137-178.
- Hopwood, D. A. 1997. Genetic contributions to understanding polyketide synthases. Chem. Rev. 97: 2465-2497. https://doi.org/10.1021/cr960034i
- Iannitelli, R. C. and M. Ikawa. 1980. Effect of fatty acids on action of polyene antibiotics. Antimicrob. Agents Chemother. 17: 861-864. https://doi.org/10.1128/AAC.17.5.861
- Jing, K., X. Hao, and Y. Lu. 2011. Effect of propionate on the production of natamycin with Streptomyces gilvosporeus XM-172. Afr. J. Biotechnol. 10: 10030-10033.
- Katz, L. 1997. Manipulation of modular polyketide synthases. Chem. Rev. 97: 2557-2575. https://doi.org/10.1021/cr960025+
- Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, et al. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600. https://doi.org/10.1128/JB.185.2.592-600.2003
-
Kim, S. H., J. C. Yoo, and T. S. Kim. 2009. Nargenicin enhances 1,25-dihydroxyvitamin D3- and all-trans retinoic acidinduced leukemia cell differentiation via
$PKC{\beta}I/MAPK$ pathways. Biochem. Pharmacol. 77: 1694-1701. https://doi.org/10.1016/j.bcp.2009.03.004 - Lee, P. C., T. Umeyama, and S. Horinouchi. 2002. AfsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43: 1413-1430. https://doi.org/10.1046/j.1365-2958.2002.02840.x
- Li, C., G. Florova, A. Konstatin, and K. A. Reynolds. 2004. Crotonylcoenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation. Microbiology 150: 3463-3472. https://doi.org/10.1099/mic.0.27251-0
- Li, L. Z., H. Zheng, and Y. Yuan. 2007. Effects of propionate on streptolydigin production and carbon flux distribution in Streptomyces lydicus AS 4.2501. Chin. J. Chem. Eng. 15: 143-149. https://doi.org/10.1016/S1004-9541(07)60049-4
- Maharjan, S., D. Koju, H. C. Lee, J. C. Yoo, and J. K. Sohng. 2012. Metabolic engineering of Nocardia sp. CS682 for enhanced production of nargenicin A1. Appl. Biochem. Biotechnol. 166: 805-817. https://doi.org/10.1007/s12010-011-9470-1
- Maharjan, S., J. W. Park, Y. J. Yoon, H. C. Lee, and J. K. Sohng. 2010. Metabolic engineering of Streptomyces venezuelae for malonyl-CoA biosynthesis to enhance heterologous production of polyketides. Biotechnol. Lett. 32: 277-282. https://doi.org/10.1007/s10529-009-0152-9
- Maharjan, S., T. J. Oh, H. C. Lee, and J. K. Sohng. 2008. Heterologous expression of metK1-sp and afsR-sp in Streptomyces venezuelae for the production of pikromycin. Biotechnol. Lett. 30: 1621-1626. https://doi.org/10.1007/s10529-008-9735-0
- Mo, S., Y. H. Ban, J. W. Park, Y. J. Yoo, and Y. J. Yoon. 2009. Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J. Ind. Microbiol. Biotechnol. 36: 1473-1482. https://doi.org/10.1007/s10295-009-0635-7
- Mouslim, J., L. David, G. Petel, and M. Gendraud. 1993. Effect of exogeneous methyl oleate on the time course of some parameters of Streptomyces hygroscopicus NRRL B-1865 culture. Appl. Microbiol. Biotechnol. 39: 585-588. https://doi.org/10.1007/BF00205056
- Murli, S., J. Kennedy, L. C. Dayem, J. R. Carney, and J. T. Kealey. 2003. Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production. J. Ind. Microbiol. Biotechnol. 30: 500-509. https://doi.org/10.1007/s10295-003-0073-x
- Okamoto, S., A. Lezhava, T. Hosaka, Y. Okamoto-Hosoya, and K. Ochi. 2003. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J. Bacteriol. 185: 601-609. https://doi.org/10.1128/JB.185.2.601-609.2003
- Olano, C., F. Lombo, C. Mendez, and J. A. Salas. 2008. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab. Eng. 10: 281-292. https://doi.org/10.1016/j.ymben.2008.07.001
- Paudel, S., H. C. Lee, B. S. Kim, and J. K. Sohng. 2011. Enhancement of pradimicin production in Actinomadura hibisca P157-2 by metabolic engineering. Microbiol. Res. 167: 32-39. https://doi.org/10.1016/j.micres.2011.02.007
- Reeves, A. R., I. A. Brikun, W. H. Cernota, B. I. Leach, M. C. Gonzalez, and J. M. Weber. 2006. Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J. Ind. Microbiol. Biotechnol. 33: 600-609. https://doi.org/10.1007/s10295-006-0094-3
- Reeves, A. R., I. A. Brikun, W. H. Cernota, B. I. Leach, M. C. Gonzalez, and J. M. Weber. 2007. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab. Eng. 9: 293-303. https://doi.org/10.1016/j.ymben.2007.02.001
- Ryu, Y. G., M. J. Butler, K. F. Chater, and K. J. Lee. 2006. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl. Environ. Microbiol. 72: 7132-7139. https://doi.org/10.1128/AEM.01308-06
- Sohng, J., T. Yamaguchi, C. Seong, K. Baik, S. Park, H. Lee, S. Jang, J. Simkhada, and J. Yoo. 2008. Production, isolation and biological activity of nargenicin from Nocardia sp. CS682. Arch. Pharm. Res. 31: 1339-1345. https://doi.org/10.1007/s12272-001-2115-0
- Wang, Y., B. A. Boghigian, and B. A. Pfeifer. 2007. Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene. Appl. Microbiol. Biotechnol. 77: 367-373. https://doi.org/10.1007/s00253-007-1172-9
- Yoon, G. S., K. H. Ko, H. W. Kang, J. W. Suh, Y. S. Kim, and Y. W. Ryu. 2006. Characterization of S-adenosylmethionine synthetase from Streptomyces avermitilis NRRL8165 and its effect on antibiotic production. Enzyme Microb. Technol. 39: 466-473. https://doi.org/10.1016/j.enzmictec.2005.11.049
- Zhao, X. Q., Y. Y. Jin, and H. J. Kwon. 2006. S-Adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces spp. in a mode independent of its role as a methyl donor. J. Microbiol. Biotechnol. 16: 927-932.
Cited by
- Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus vol.97, pp.12, 2012, https://doi.org/10.1007/s00253-013-4852-7
- Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies vol.40, pp.9, 2012, https://doi.org/10.1007/s10295-013-1301-7
- 토양 균주 발효 추출물 Nargenicin 및 그 유도체의 항생제 대체 효과능 평가 vol.22, pp.3, 2014, https://doi.org/10.11625/kjoa.2014.22.3.469
- Herboxidiene biosynthesis, production, and structural modifications: prospect for hybrids with related polyketide vol.99, pp.20, 2015, https://doi.org/10.1007/s00253-015-6860-2
- Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform vol.100, pp.23, 2016, https://doi.org/10.1007/s00253-016-7705-3
- Genetic Manipulation of Nocardia Species vol.40, pp.1, 2012, https://doi.org/10.1002/9780471729259.mc10f02s40
- Bioactive molecules from Nocardia: diversity, bioactivities and biosynthesis vol.46, pp.3, 2012, https://doi.org/10.1007/s10295-018-02120-y
- Natural Products from Nocardia and Their Role in Pathogenicity vol.31, pp.3, 2012, https://doi.org/10.1159/000516864