DOI QR코드

DOI QR Code

Properties of Bac W42, a Bacteriocin Produced by Bacillus subtilis W42 Isolated from Cheonggukjang

  • Kindoli, Salum (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Lee, Hwang A (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Kim, Jeong Hwan (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University)
  • 투고 : 2011.10.04
  • 심사 : 2012.04.01
  • 발행 : 2012.08.28

초록

Ten Bacillus strains with antimicrobial activities were isolated from Cheonggukjang produced at different parts in Korea. They all inhibited Listeria monocytogenes ATCC 19111 and nine inhibited Bacillus cereus ATCC 14579. Four isolates (W42, H27, SKE 12, and K21) showing strong inhibiting activities were identified as B. subtilis. B. subtilis W42 was the most inhibiting strain. The antimicrobial activity of culture supernatant from B. subtilis W42 was destroyed completely by proteinase K treatment, indicating that a bacteriocin was the responsible agent. The bacteriocin, Bac W42, was most stable at pH 7 and stable between pH 3-6 and 8-9. Bac W42 was stable up to $80^{\circ}C$. BHI (brain heart infusion) and TSB (tryptic soy broth) were the best media for the activity (320 AU/ml) followed by LB (160 AU/ml). Bac W42 was partially purified by column chromatographies. The specific activity was increased from 1,151.2 AU/ml to 9,043.5 AU/ml and the final yield was 26.3%. Bac W42 was 5.4 kDa in size as determined by SDS-PAGE. Bac W42 showed bactericidal activity against L. monocytogenes ATCC 19111.

키워드

참고문헌

  1. Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis. J. Biochem. 98: 585-603.
  2. Bizani, D. and A. Brandelli. 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. J. Appl. Microbiol. 93: 512-519. https://doi.org/10.1046/j.1365-2672.2002.01720.x
  3. Bradford, M. M. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chehimi, S., F. Delalande, S. Sable, M.-R. Hajlaoui, A. V. Dorsselaer, F. Limam, and A.-M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290. https://doi.org/10.1139/w06-116
  5. Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, et al. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247. https://doi.org/10.1046/j.1472-765X.2001.00898.x
  6. Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
  7. Cladera-Olivera, F., G. R. Caron, and A. Brandelli. 2004. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 38: 251-256. https://doi.org/10.1111/j.1472-765X.2004.01478.x
  8. Daeschel, M. A. 1992. Bacteriocins of lactic acid bacteria, pp. 57-79. In B. Ray and M. A. Daeschel (eds.). Food Biopreservatives of Microbial Origin. CRC Press, Boca Raton, Florida.
  9. Diep, D. B. and I. F. Nes. 2002. Ribosomally synthesized antibacterial peptides in Gram-positive bacteria. Curr. Drugs Target 3: 107-122. https://doi.org/10.2174/1389450024605409
  10. Galvez, A., R. L. Lopez, H. Abriouel, E. Valdivia, and N. B. Omar. 2008. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28: 125-152. https://doi.org/10.1080/07388550802107202
  11. Hammami, I., A. Rhouma, B. Jaouadi, A. Rebai, and X. Nesme. 2009. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett. Appl. Microbiol. 48: 253-260. https://doi.org/10.1111/j.1472-765X.2008.02524.x
  12. Hoover, D. G and S. K. Harlander. 1993. Screening methods for detecting bacteriocin activity, pp 23-39. In D. G. Hoover and L. R. Steenson (eds.). Bacteriocins of Lactic Acid Bacteria. Academic Press, San Diago, California.
  13. Hoshonia, A.-M., N. Yamamoto, K. Otawa, C. Tada, and Y. Nakai. 2010. Isolation of bacteriocin substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol. 56: 151-161. https://doi.org/10.2323/jgam.56.151
  14. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.
  15. Joerger, R. D. 2003. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640-647.
  16. Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888. https://doi.org/10.1111/j.1365-2672.2004.02513.x
  17. Kayalvizhi, N. and P. Gunasekaran. 2008. Production and characterization of a low-molecular-weight bacteriocin from Bacillus licheniformis MKU3. Lett. Appl. Microbiol. 47: 600-607. https://doi.org/10.1111/j.1472-765X.2008.02473.x
  18. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86.
  19. Klein, C., C. Kaletta, N. Schnell, and K.-D. Entian. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132-142.
  20. Korenblum, E., I. von der Weid, A. L. S. Santos, A. S. Rosado, G. V. Sebastián, C. M. L. M. Coutinho, et al. 2005. Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus $H_2O$-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. J. Appl. Microbiol. 98: 667-675. https://doi.org/10.1111/j.1365-2672.2004.02518.x
  21. Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M. C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins produced by Bacillus coagulans $I_4$. Appl. Environ. Microbiol. 66: 5213-5220. https://doi.org/10.1128/AEM.66.12.5213-5220.2000
  22. Lisboa, M. P., D. Bonatto, D. Bizani, J. A. Henriques, and A. Brandelli. 2006. Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int. Microbiol. 9: 111-116.
  23. Maisnier-Patin, S., N. Deschamps, S. R. Tatini, and J. Richard. 1992. Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72: 249-263. https://doi.org/10.1051/lait:1992318
  24. Martinez, M. A., O. D. Delgado, J. D. Breccia, M. D. Baigori, and F. Sineriz. 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6: 391-395. https://doi.org/10.1007/s00792-002-0269-4
  25. Nicolas, G. G., G. LaPointe, and C. M. Lavoie. 2011. Production, purification, sequencing and activity spectra of mutacins D-123.1 and F-59.1. BMC Microbiol. 11: 69. https://doi.org/10.1186/1471-2180-11-69
  26. Nissen-Meyer, J. and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167: 67-77. https://doi.org/10.1007/s002030050418
  27. Oman, T. J., J. M. Boettcher, H. Wang, X. N. Okalibe, and W. A. van der Donk. 2011. Sublancin is not a lantibiotic but an Slinked glycopeptides. Nat. Chem. Biol. 7: 78-80. https://doi.org/10.1038/nchembio.509
  28. Riazi, S., R. E. Wirawan, V. Badmaev, and M. L. Chikindas. 2009. Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J. Appl. Microbiol. 106: 1370-1377. https://doi.org/10.1111/j.1365-2672.2008.04105.x
  29. Risoen, P. A., P. Ronning, I. K. Hegna, and A.-B. Kolsto. 2004. Characterization of a broad range antimicrobial substance from Bacillus cereus. J. Appl. Microbiol. 96: 648-655. https://doi.org/10.1046/j.1365-2672.2003.02139.x
  30. Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
  31. Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulphate polyacylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
  32. Settanni, L. and A. Corsetti. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121: 123-138. https://doi.org/10.1016/j.ijfoodmicro.2007.09.001
  33. Sharma, N., G. Kapoor, and B. Neopaney. 2006. Characterization of a new bacteriocin from a novel isolated strain of Bacillus lentus NG121. Antonie Van Leeuwenhoek 89: 337-343. https://doi.org/10.1007/s10482-005-9036-8
  34. Sitori, L. R., F. C. Olivera, D. M. Lorenzini, S. M. Tsai, and A. Brandelli. 2006. Purification and partial characterization of an antimicrobial peptide produced by Bacillus sp. strain P45, a bacterium from the Amazon basin fish Piaractus mesopotamicus. J. Gen. Appl. Microbiol. 52: 357-363. https://doi.org/10.2323/jgam.52.357
  35. Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  36. Tabbene, O., I. B. Slimene, F. Bouabdallah, M.-L. Mangoni, M.-C. Urdaci, and F. Limam. 2009. Production of antimethicillin-resistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl. Biochem. Biotechnol. 157: 407-419. https://doi.org/10.1007/s12010-008-8277-1
  37. Xie, J., R. Zhang, C. Shang, and J. Guo. 2009. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol. 8: 5611-5619.

피인용 문헌

  1. Properties of a Bacteriocin from Bacillus subtilis H27 Isolated from Cheonggukjang vol.21, pp.6, 2012, https://doi.org/10.1007/s10068-012-0232-9
  2. Bacteriocin activity against various pathogens produced by Pediococcus pentosaceus VJ13 isolated from Idly batter vol.27, pp.11, 2013, https://doi.org/10.1002/bmc.2948
  3. Microbial and physiochemical properties of Cheonggukjang fermented using Bacillus strains with antibacterial or antifungal activities vol.23, pp.5, 2012, https://doi.org/10.1007/s10068-014-0208-z
  4. Bacillus cereus를 억제하는 Bacillus subtilis HH28의 항균물질 정제와 특성규명 vol.42, pp.4, 2012, https://doi.org/10.4014/kjmb.1411.11003
  5. Fibrinolytic Activities of Bacillus Species Isolated from Traditional Fermented Soyfoods vol.48, pp.2, 2012, https://doi.org/10.14397/jals.2014.48.2.163
  6. Toxicity of fermented soybean product (cheonggukjang) manufactured by mixed culture of Bacillus subtilis MC31 and Lactobacillus sakei 383 on liver and kidney of ICR mice vol.30, pp.2, 2012, https://doi.org/10.5625/lar.2014.30.2.54
  7. Properties of a Bacteriocin Produced by Bacillus subtilis EMD4 Isolated from Ganjang (Soy Sauce) vol.25, pp.9, 2012, https://doi.org/10.4014/jmb.1502.02037
  8. Purification and partial characterization of a thermostable antimicrobial protein from Bacillus subtilis FB123 vol.31, pp.8, 2012, https://doi.org/10.1007/s11274-015-1871-9
  9. Antimicrobial activity of Bacillus amyloliquefaciens EMD17 isolated from Cheonggukjang and potential use as a starter for fermented soy foods vol.25, pp.2, 2012, https://doi.org/10.1007/s10068-016-0073-z
  10. Properties of Antimicrobial Substances Produced by Bacillus amyloliquefaciens CJW15 and Bacillus amyloliquefaciens SSD8 vol.44, pp.1, 2012, https://doi.org/10.4014/mbl.1509.09008
  11. 복합종균을 접종하여 발효한 메주의 특성 vol.44, pp.2, 2016, https://doi.org/10.4014/mbl.1512.12009
  12. Properties of Antimicrobial Substances Produced by Bacillus species Isolated from Rice Straw vol.45, pp.2, 2012, https://doi.org/10.4014/mbl.1611.11004
  13. Properties of Gul Jeotgal (Oyster Jeotgal) Prepared with Different Types of Salt and Bacillus subtilis JS2 as Starter vol.46, pp.1, 2018, https://doi.org/10.4014/mbl.1711.11002
  14. 식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구 vol.47, pp.4, 2012, https://doi.org/10.4014/mbl.1904.04001
  15. Biomanufacturing process for the production of bacteriocins from Bacillaceae family vol.7, pp.None, 2012, https://doi.org/10.1186/s40643-020-0295-z
  16. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang vol.22, pp.11, 2012, https://doi.org/10.3390/ijms22115746
  17. Selection of Bacteriocinogenic Bacillus spp. from Traditional Fermented Korean Food Products with Additional Beneficial Properties vol.7, pp.4, 2012, https://doi.org/10.3390/fermentation7040271