References
- Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis. J. Biochem. 98: 585-603.
- Bizani, D. and A. Brandelli. 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. J. Appl. Microbiol. 93: 512-519. https://doi.org/10.1046/j.1365-2672.2002.01720.x
- Bradford, M. M. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Chehimi, S., F. Delalande, S. Sable, M.-R. Hajlaoui, A. V. Dorsselaer, F. Limam, and A.-M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290. https://doi.org/10.1139/w06-116
- Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, et al. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247. https://doi.org/10.1046/j.1472-765X.2001.00898.x
- Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
- Cladera-Olivera, F., G. R. Caron, and A. Brandelli. 2004. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 38: 251-256. https://doi.org/10.1111/j.1472-765X.2004.01478.x
- Daeschel, M. A. 1992. Bacteriocins of lactic acid bacteria, pp. 57-79. In B. Ray and M. A. Daeschel (eds.). Food Biopreservatives of Microbial Origin. CRC Press, Boca Raton, Florida.
- Diep, D. B. and I. F. Nes. 2002. Ribosomally synthesized antibacterial peptides in Gram-positive bacteria. Curr. Drugs Target 3: 107-122. https://doi.org/10.2174/1389450024605409
- Galvez, A., R. L. Lopez, H. Abriouel, E. Valdivia, and N. B. Omar. 2008. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28: 125-152. https://doi.org/10.1080/07388550802107202
- Hammami, I., A. Rhouma, B. Jaouadi, A. Rebai, and X. Nesme. 2009. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett. Appl. Microbiol. 48: 253-260. https://doi.org/10.1111/j.1472-765X.2008.02524.x
- Hoover, D. G and S. K. Harlander. 1993. Screening methods for detecting bacteriocin activity, pp 23-39. In D. G. Hoover and L. R. Steenson (eds.). Bacteriocins of Lactic Acid Bacteria. Academic Press, San Diago, California.
- Hoshonia, A.-M., N. Yamamoto, K. Otawa, C. Tada, and Y. Nakai. 2010. Isolation of bacteriocin substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol. 56: 151-161. https://doi.org/10.2323/jgam.56.151
- Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.
- Joerger, R. D. 2003. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640-647.
- Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888. https://doi.org/10.1111/j.1365-2672.2004.02513.x
- Kayalvizhi, N. and P. Gunasekaran. 2008. Production and characterization of a low-molecular-weight bacteriocin from Bacillus licheniformis MKU3. Lett. Appl. Microbiol. 47: 600-607. https://doi.org/10.1111/j.1472-765X.2008.02473.x
- Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86.
- Klein, C., C. Kaletta, N. Schnell, and K.-D. Entian. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132-142.
-
Korenblum, E., I. von der Weid, A. L. S. Santos, A. S. Rosado, G. V. Sebastián, C. M. L. M. Coutinho, et al. 2005. Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus
$H_2O$ -1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. J. Appl. Microbiol. 98: 667-675. https://doi.org/10.1111/j.1365-2672.2004.02518.x -
Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M. C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins produced by Bacillus coagulans
$I_4$ . Appl. Environ. Microbiol. 66: 5213-5220. https://doi.org/10.1128/AEM.66.12.5213-5220.2000 - Lisboa, M. P., D. Bonatto, D. Bizani, J. A. Henriques, and A. Brandelli. 2006. Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int. Microbiol. 9: 111-116.
- Maisnier-Patin, S., N. Deschamps, S. R. Tatini, and J. Richard. 1992. Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72: 249-263. https://doi.org/10.1051/lait:1992318
- Martinez, M. A., O. D. Delgado, J. D. Breccia, M. D. Baigori, and F. Sineriz. 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6: 391-395. https://doi.org/10.1007/s00792-002-0269-4
- Nicolas, G. G., G. LaPointe, and C. M. Lavoie. 2011. Production, purification, sequencing and activity spectra of mutacins D-123.1 and F-59.1. BMC Microbiol. 11: 69. https://doi.org/10.1186/1471-2180-11-69
- Nissen-Meyer, J. and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167: 67-77. https://doi.org/10.1007/s002030050418
- Oman, T. J., J. M. Boettcher, H. Wang, X. N. Okalibe, and W. A. van der Donk. 2011. Sublancin is not a lantibiotic but an Slinked glycopeptides. Nat. Chem. Biol. 7: 78-80. https://doi.org/10.1038/nchembio.509
- Riazi, S., R. E. Wirawan, V. Badmaev, and M. L. Chikindas. 2009. Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J. Appl. Microbiol. 106: 1370-1377. https://doi.org/10.1111/j.1365-2672.2008.04105.x
- Risoen, P. A., P. Ronning, I. K. Hegna, and A.-B. Kolsto. 2004. Characterization of a broad range antimicrobial substance from Bacillus cereus. J. Appl. Microbiol. 96: 648-655. https://doi.org/10.1046/j.1365-2672.2003.02139.x
- Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
- Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulphate polyacylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
- Settanni, L. and A. Corsetti. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121: 123-138. https://doi.org/10.1016/j.ijfoodmicro.2007.09.001
- Sharma, N., G. Kapoor, and B. Neopaney. 2006. Characterization of a new bacteriocin from a novel isolated strain of Bacillus lentus NG121. Antonie Van Leeuwenhoek 89: 337-343. https://doi.org/10.1007/s10482-005-9036-8
- Sitori, L. R., F. C. Olivera, D. M. Lorenzini, S. M. Tsai, and A. Brandelli. 2006. Purification and partial characterization of an antimicrobial peptide produced by Bacillus sp. strain P45, a bacterium from the Amazon basin fish Piaractus mesopotamicus. J. Gen. Appl. Microbiol. 52: 357-363. https://doi.org/10.2323/jgam.52.357
- Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Tabbene, O., I. B. Slimene, F. Bouabdallah, M.-L. Mangoni, M.-C. Urdaci, and F. Limam. 2009. Production of antimethicillin-resistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl. Biochem. Biotechnol. 157: 407-419. https://doi.org/10.1007/s12010-008-8277-1
- Xie, J., R. Zhang, C. Shang, and J. Guo. 2009. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol. 8: 5611-5619.
Cited by
- Properties of a Bacteriocin from Bacillus subtilis H27 Isolated from Cheonggukjang vol.21, pp.6, 2012, https://doi.org/10.1007/s10068-012-0232-9
- Bacteriocin activity against various pathogens produced by Pediococcus pentosaceus VJ13 isolated from Idly batter vol.27, pp.11, 2013, https://doi.org/10.1002/bmc.2948
- Microbial and physiochemical properties of Cheonggukjang fermented using Bacillus strains with antibacterial or antifungal activities vol.23, pp.5, 2012, https://doi.org/10.1007/s10068-014-0208-z
- Bacillus cereus를 억제하는 Bacillus subtilis HH28의 항균물질 정제와 특성규명 vol.42, pp.4, 2012, https://doi.org/10.4014/kjmb.1411.11003
- Fibrinolytic Activities of Bacillus Species Isolated from Traditional Fermented Soyfoods vol.48, pp.2, 2012, https://doi.org/10.14397/jals.2014.48.2.163
- Toxicity of fermented soybean product (cheonggukjang) manufactured by mixed culture of Bacillus subtilis MC31 and Lactobacillus sakei 383 on liver and kidney of ICR mice vol.30, pp.2, 2012, https://doi.org/10.5625/lar.2014.30.2.54
- Properties of a Bacteriocin Produced by Bacillus subtilis EMD4 Isolated from Ganjang (Soy Sauce) vol.25, pp.9, 2012, https://doi.org/10.4014/jmb.1502.02037
- Purification and partial characterization of a thermostable antimicrobial protein from Bacillus subtilis FB123 vol.31, pp.8, 2012, https://doi.org/10.1007/s11274-015-1871-9
- Antimicrobial activity of Bacillus amyloliquefaciens EMD17 isolated from Cheonggukjang and potential use as a starter for fermented soy foods vol.25, pp.2, 2012, https://doi.org/10.1007/s10068-016-0073-z
- Properties of Antimicrobial Substances Produced by Bacillus amyloliquefaciens CJW15 and Bacillus amyloliquefaciens SSD8 vol.44, pp.1, 2012, https://doi.org/10.4014/mbl.1509.09008
- 복합종균을 접종하여 발효한 메주의 특성 vol.44, pp.2, 2016, https://doi.org/10.4014/mbl.1512.12009
- Properties of Antimicrobial Substances Produced by Bacillus species Isolated from Rice Straw vol.45, pp.2, 2012, https://doi.org/10.4014/mbl.1611.11004
- Properties of Gul Jeotgal (Oyster Jeotgal) Prepared with Different Types of Salt and Bacillus subtilis JS2 as Starter vol.46, pp.1, 2018, https://doi.org/10.4014/mbl.1711.11002
- 식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구 vol.47, pp.4, 2012, https://doi.org/10.4014/mbl.1904.04001
- Biomanufacturing process for the production of bacteriocins from Bacillaceae family vol.7, pp.None, 2012, https://doi.org/10.1186/s40643-020-0295-z
- Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang vol.22, pp.11, 2012, https://doi.org/10.3390/ijms22115746
- Selection of Bacteriocinogenic Bacillus spp. from Traditional Fermented Korean Food Products with Additional Beneficial Properties vol.7, pp.4, 2012, https://doi.org/10.3390/fermentation7040271