References
- Boue, M. S., H. C. Carter-Wientjes, Y. B. Shih, and E. T. Cleveland. 2003. Identification of flavone aglycones and glycosides in soybean pods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 991: 61-68. https://doi.org/10.1016/S0021-9673(03)00209-7
- Canivenc-Lavier, M. C., M. Bentejac, M. L. Miller, J. Leclerc, M. H. Siess, N. Latruffe, and M. Suschetet. 1996. Differential effects of nonhydroxylated flavonoids as inducers of cytochrome P450 1A and 2B isozymes in rat liver. Toxicol. Appl. Pharmacol. 136: 348-353. https://doi.org/10.1006/taap.1996.0042
- Chen, L. J., D. E. Games, J. Jones, and H. Kidwell. 2003. Separation and identification of flavonoids in an extract from the seeds of Oroxylum indicum by CCC. J. Liq. Chromatogr. Relat. Technol. 26: 1623-1636. https://doi.org/10.1081/JLC-120021271
- Ciolino, H. P., T. T. Wang, and G. C. Yeh. 1998. Diosmin and diosmetin are agonists of the aryl hydrocarbon receptor that differentially affect cytochrome P450 1A1 activity. Cancer Res. 58: 2754-2760.
- Das, S. and P. N. R. John. 2006. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69: 499-508. https://doi.org/10.1021/np0504659
- Gotoh, O. 1992. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267: 83-90.
- Green, A. J., A. W. Munro, M. R. Cheesman, G. A. Reid, C. von Wachenfeldt, and S. K. Chapman. 2003. Expression, purification and characterization of a Bacillus subtilis ferredoxin: A potential electron transfer donor to cytochrome P450. Biol. J. Inorg. Biochem. 3: 92-99.
- Gunsalus, I. C. and S. G. Sligar. 1978. Oxygen reduction by the P450 monoxygenase systems. Adv. Enzymol. Relat. Areas Mol. Biol. 47: 1-44.
- Hannemann, F., A. Bichet, K. M. Ewen, and R. Bernhardt. 2007. Cytochrome P450 systems - biological variations of electron transport chains. Biochim. Biophys. Acta 1770: 330-344. https://doi.org/10.1016/j.bbagen.2006.07.017
- Hodek, P., P. Trefil, and M. Stiborova. 2002. Flavonoids - potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact. 139: 1-21. https://doi.org/10.1016/S0009-2797(01)00285-X
- Hosny, M., K. Dhar, and J. P. Rosazza. 2001. Hydroxylations and methylations of quercetin, fisetin and catechin by Streptomyces griseus. J. Nat. Prod. 64: 462-465. https://doi.org/10.1021/np000457m
- Hosny, M. and J. P. N. Rosazza. 1999. Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J. Nat. Prod. 62: 1609-1612. https://doi.org/10.1021/np9901783
- Hur, H. and F. Rafii. 2000. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol. Lett. 192: 21-25. https://doi.org/10.1111/j.1574-6968.2000.tb09353.x
- Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of chromone, chromanone, and ring A hydroxyflavones. J. Nat. Prod. 53: 1471-1478. https://doi.org/10.1021/np50072a011
- Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of flavone and isoflavone. J. Xenobiot. 20: 363-373. https://doi.org/10.3109/00498259009046853
- Kanth, B. K., K. Liou, and J. K. Sohng. 2010. Homology modeling; binding site identification and docking in flavone hydroxylase CYP105P2 in Streptomyces peucetius ATCC 27952. Comp. Biol. Chem. 34: 226-231. https://doi.org/10.1016/j.compbiolchem.2010.08.002
- Kasai, N., S. Ikushiro, S. Hirosue, A. Arisawa, H. Ichinose, Y. Uchida, et al. 2010. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J. Biochem. 147: 117-125. https://doi.org/10.1093/jb/mvp155
- Ma, Y. L., Q. M. Li, H. Van den Heuvel, and M. Claeys. 1997. Characterization of flavone and flavonol aglycones by collisionreduced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11: 1357-1364. https://doi.org/10.1002/(SICI)1097-0231(199708)11:12<1357::AID-RCM983>3.0.CO;2-9
- Modi, S., M. J. Sutcliffe, W. U. Primrose, L. Y. Lian, and G. C. Roberts. 1996. The catalytic mechanism of cytochrome P450 BM3 involves a 6 Å movement of the bound substrate on reduction. Nat. Struct. Biol. 3: 414-417. https://doi.org/10.1038/nsb0596-414
- Nelson, D. R., L. Koymans, T. Kamataki, J. J. Stegeman, R. Fevereisen, D. J. Waxman, et al. 1996. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42. https://doi.org/10.1097/00008571-199602000-00002
- Omura, T. and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.
- Park, Y., L. Sunhee, W. Yoonkyung, and L. Yoongho. 2009. Relationships between structure and anti-oxidative effects of hydroxyflavones. Bull. Korean Chem. Soc. 30: 1397-1400. https://doi.org/10.5012/bkcs.2009.30.6.1397
- Peterson, J. A., M. C. Lorence, and B. Amarneh. 1990. Putidaredoxin reductase and putidaredoxin: Cloning, sequence determination, and heterologous expression of the proteins. J. Biol. Chem. 265: 6066-6073.
- Roh, C., K. Y. Choi, B. P. Pandey, and B. G. Kim. 2009. Hydroxylation of daidzein by CYP107H1 from Bacillus subtilis 168. J. Mol. Catal. B Enzym. 59: 248-253. https://doi.org/10.1016/j.molcatb.2008.07.005
- Rujisenaars, H. J., E. M. Sperling, P. H. Wiegerinck, F. T. Brands, J. Wery, and J. A. de Bont. 2007. Testosterone 15Bhydroxylation by solvent tolerant Pseudomonas putida S12. J. Biotechnol. 131: 205-208. https://doi.org/10.1016/j.jbiotec.2007.06.007
- Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Sariaslani, F. S., L. R. McGee, M. K. Trower, and F. G. Kitson. 1990. Lack of region- and stereospecificity in oxidation of (+) camphor by Streptomyces griseus enriched in cytochrome P- 450soy. Biochem. Biophys. Res. Commun. 170: 456-461. https://doi.org/10.1016/0006-291X(90)92113-E
- Seitz, C., S. Ameres, and G. Forkmann. 2007. Identification of the molecular basis for the functional difference between flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase. FEBS Lett. 581: 3429-3434. https://doi.org/10.1016/j.febslet.2007.06.045
- Shinodo, K., Y. Ohnishi, H. K. Chun, H. Takahashi, M. Hayashi, A. Saito, et al. 2001. Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes. Biosci. Biotechnol. Biochem. 65: 2472-2481. https://doi.org/10.1271/bbb.65.2472
- Shrestha, P., T.-J. Oh, K. Liou, and J. K. Sohng. 2008. Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl. Microbiol. Biotechnol. 79: 555-562. https://doi.org/10.1007/s00253-008-1455-9
- Sthapit, B., T.-J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206. https://doi.org/10.1016/j.febslet.2004.04.033
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Ueno, M., M. Yamashita, M. Hashimoto, M. Hino, and A. Fujie. 2005. Oxidative activities of heterologously expressed CYP107B1 and CYP105D1 in whole-cell biotransformation using Streptomyces lividans TK24. J. Biosci. Bioeng. 100: 567-572. https://doi.org/10.1263/jbb.100.567
- Uno, T., O. Sota, M. Satoko, I. Atsushi, U. Yuichi, N. Masahiko, et al. 2008. Bioconversion of small molecules by cytochrome P450 species expressed in Escherichia coli. Biotechnol. Appl. Biochem. 50: 165-171. https://doi.org/10.1042/BA20070173
Cited by
- CYP105—diverse structures, functions and roles in an intriguing family of enzymes in Streptomyces vol.117, pp.6, 2014, https://doi.org/10.1111/jam.12662
- Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces peucetius and Its Conformational Changes in Response to Substrate Binding vol.17, pp.6, 2012, https://doi.org/10.3390/ijms17060813
- Biosynthesis of a novel fisetin glycoside from engineered Escherichia coli vol.43, pp.None, 2012, https://doi.org/10.1016/j.jiec.2016.07.054
- Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function vol.34, pp.9, 2012, https://doi.org/10.1039/c7np00034k
- Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect vol.102, pp.10, 2018, https://doi.org/10.1007/s00253-018-8957-x
- Tracking Down a New Steroid‐Hydroxylating Promiscuous Cytochrome P450: CYP154C8 from Streptomyces sp. W2233‐SM vol.19, pp.10, 2012, https://doi.org/10.1002/cbic.201800018
- Unusual Flavones from Primula macrocalyx as Inhibitors of OAT1 and OAT3 and as Antifungal Agents against Candida rugosa vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-45728-5
- Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents vol.27, pp.2, 2019, https://doi.org/10.4062/biomolther.2018.183