References
- Bailey, M. J., P. Biely, and K. Poutanen. 1992. Laboratory testing of method for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
- Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
- Berg, B., B. V. Hofsten, and G. Pettersson. 1972. Growth and cellulose formation by Cellvibrio fulvus. J. Appl. Bacteriol. 35: 201-214. https://doi.org/10.1111/j.1365-2672.1972.tb03691.x
- Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
-
Claus, D. and R. C. W. Berkeley. 1986. Genus Bacillus Cohn 1872,
$174^{AL}$ , pp. 1105-1139. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2. Williams and Wilkins, Baltimore, USA. - Collins, T., C. Gerday, and G. Feller. 2005. Xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Jia, Ouyang, Shen Wang, Yan Wang, Xin Li, Mu Chen, Qiang Yong, and Shiyuan Yu. 2011. Production of a Trichoderma reesei QM9414 xylanase in Pichia pastoris and its application in biobleaching of wheat straw pulp. World J. Microbiol. Biotechnol. 27: 751-758. https://doi.org/10.1007/s11274-010-0512-6
- Kim, J. M., H. K. Park, D. Y. Yum, B. K. Hahm, D. H. Bai, and J. H. Yu. 1994. Nucleotide sequence of the pectate lyase gene from alkali-tolerant Bacillus sp. YA-14. Biosci. Biotechnol. Biochem. 58: 947-949. https://doi.org/10.1271/bbb.58.947
- Knob, A. and E. C. Carmona. 2009. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: A novel acidophilic xylanase. Appl. Biochem. Biotechnol. 162: 429-443.
- Ko, C. H., W. L. Chen, C. H. Tsai, W. N. Jane, C. C. Liu, and J. Tu. 2007. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresour. Technol. 98: 2727-2733. https://doi.org/10.1016/j.biortech.2006.09.034
- Ko, C.-H., C.-H. Tsaia, J. Tu, H.-Y. Lee, L.-T. Kua, P.-A. Kuod, and Y.-K. Lai. 2010. Molecular cloning and characterization of a novel thermostable xylanase from Paenibacillus campinasensis BL11. Process Biochem. 45: 1638-1644. https://doi.org/10.1016/j.procbio.2010.06.015
- Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Maalej, Ines, Ines Belhaj, Najla Fourati Masmoudi, and Hafedh Belghith. 2009. Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: Purification and characterization. Appl. Biochem. Biotechnol. 158: 200-212. https://doi.org/10.1007/s12010-008-8317-x
- Menon, Gopalakrishnan, Kalpana Mody, Jitendra Keshri, and Bhavanath Jha. 2010. Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus Strain, GESF-1. Biotechnol. Bioprocess Eng. 15: 998-1005. https://doi.org/10.1007/s12257-010-0116-x
- Morag, E., E. A. Bayer, and R. Lamed. 1990. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol. 172: 6098-6105.
- Nakamura, S., R. Nakai, K. Namba, T. Kubo, K. Wakabayashi, R. Aono, and K. Horikoshi. 1995. Structure-function relationship of the xylanase from alkaliphilic Bacillus sp. strain 41M-1. Nucleic Acids Symp. 34: 99-100.
- Pason, Patthra, Akihiko Kosugi, Rattiya Waeonukul, Chakrit Tachaapaikoon, Khanok Ratanakhanokchai, Takamitsu Arai, Yoshinori Murata, Jun Nakajima, and Yutaka Mori. 2010. Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Appl. Microbiol. Biotechnol. 85: 573-580. https://doi.org/10.1007/s00253-009-2117-2
- Polizeli, M. L., A. C. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 3nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
- Shin, K., M. Jeya, J. K. Lee, and Y. S. Kim. 2010. Purification and characterization of a thermostable xylanase from Fomitopsis pinicola. J. Microbiol. Biotechnol. 20: 1415-1423. https://doi.org/10.4014/jmb.1003.03031
- Soren, Dhananjay, Mohanlal Jana, Subhabrata Sengupta, and Anil K. Ghosh. 2009. Purification and characterization of a low molecular weight endo-xylanase from mushroom Termitomyces clypeatus. Appl. Biochem. Biotechnol. 162: 373-389.
- Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7. https://doi.org/10.1111/j.1574-6968.2000.tb08925.x
- Suzuki, M. T. and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630.
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki. 2003. Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review. Process Biochem. 38: 1327-1340. https://doi.org/10.1016/S0032-9592(02)00331-X
- Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Meth. Enzymol. 160: 59-74.
- Zhao, Y., K. Meng, H. Luo, P. Yang, P. Shi, H. Huang, Y. Bai, and B. Yao. 2011. Cloning, expression, and characterization of a new xylanase from alkalophilic Paenibacillus sp. 12-11. J. Microbiol. Biotechnol. 21: 861-868. https://doi.org/10.4014/jmb.1102.02024
Cited by
-
용인 함박산 토양에서 분리한 Paenibacillus sp. HX-1의 동정과 endo-
${\beta}$ -1,4-xylanase 생산 증가를 위한 배지최적화 vol.41, pp.3, 2012, https://doi.org/10.4014/kjmb.1304.04001 - Purification and Characterization of a Thermostable Xylanase from Paenibacillus sp. NF1 and its Application in Xylooligosaccharides Production vol.24, pp.4, 2014, https://doi.org/10.4014/jmb.1312.12072
- Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis vol.41, pp.1, 2012, https://doi.org/10.1007/s10295-013-1363-6
- Studies on properties of the xylan-binding domain and linker sequence of xylanase XynG1-1 from Paenibacillus campinasensis G1-1 vol.42, pp.12, 2012, https://doi.org/10.1007/s10295-015-1698-2
- Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp vol.7, pp.1, 2012, https://doi.org/10.1007/s13205-017-0615-y
- Paenibacillus woosongensis의 Xylanase 11B 유전자 클로닝과 특성분석 vol.45, pp.2, 2012, https://doi.org/10.4014/mbl.1704.04001
- Increase in the Production of Endo-1,4-β-Xylanase from Paenibacillus brasilensis in Pichia pastoris vol.35, pp.6, 2012, https://doi.org/10.21519/0234-2758-2019-35-6-30-38
- Xylan deterioration approach: Purification and catalytic behavior optimization of a novel β-1,4-D-xylanohydrolase from Geobacillus stearothermophilus KIBGE-IB29 vol.21, pp.None, 2012, https://doi.org/10.1016/j.btre.2018.e00299
- Production, characteristics, and biotechnological applications of microbial xylanases vol.103, pp.21, 2019, https://doi.org/10.1007/s00253-019-10108-6
- New Biotransformation Mode of Zearalenone Identified in Bacillus subtilis Y816 Revealing a Novel ZEN Conjugate vol.69, pp.26, 2021, https://doi.org/10.1021/acs.jafc.1c01817
- Paecilomyces variotii xylanase production, purification and characterization with antioxidant xylo-oligosaccharides production vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-95965-w
- Identification and characterization of a thermostable GH11 xylanase from Paenibacillus campinasensis NTU-11 and the distinct roles of its carbohydrate-binding domain and linker sequence vol.209, pp.p1, 2012, https://doi.org/10.1016/j.colsurfb.2021.112167