DOI QR코드

DOI QR Code

Isolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1

  • Zheng, Hongchen (Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China) ;
  • liu, Yihan (Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China) ;
  • Liu, Xiaoguang (National Engineering Laboratory for Industrial Enzymes (NELIE)) ;
  • Wang, Jianling (Tianjin Key Laboratory of Industrial Microbiology) ;
  • Han, Ying (College of Biotechnology, Tianjin University of Science and Technology) ;
  • Lu, Fuping (Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China)
  • Received : 2011.11.18
  • Accepted : 2012.02.27
  • Published : 2012.07.28

Abstract

High levels of xylanase activity (143.98 IU/ml) produced by the newly isolated Paenibacillus campinasensis G1-1 were detected when it was cultivated in a synthetic medium. A thermostable xylanase, designated XynG1-1, from P. campinasensis G1-1 was purified to homogeneity by Octyl-Sepharose hydrophobic-interaction chromatography, Sephadex G75 gel-filter chromatography, and Q-Sepharose ion-exchange chromatography, consecutively. By multistep purification, the specific activity of XynG1-1 was up to 1,865.5 IU/mg with a 9.1-fold purification. The molecular mass of purified XynG1-1 was about 41.3 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sequence analysis revealed that XynG1-1 containing 377 amino acids encoded by 1,134 bp genomic sequences of P. campinasensis G1-1 shared 96% homology with XylX from Paenibacillus campinasensis BL11 and 77%~78% homology with xylanases from Bacillus sp. YA-335 and Bacillus sp. 41M-1, respectively. The activity of XynG1-1 was stimulated by $Ca^{2+}$, $Ba^{2+}$, DTT, and ${\beta}$-mercaptoethanol, but was inhibited by $Ni^{2+}$, $Fe^{2+}$, $Fe^{3+}$, $Zn^{2+}$, SDS, and EDTA. The purified XynG1-1 displayed a greater affinity for birchwood xylan, with an optimal temperature of $60^{\circ}C$ and an optimal pH of 7.5. The fact that XynG1-1 is cellulose-free, thermostable (stability at high temperature of $70^{\circ}C{\sim}80^{\circ}C$), and active over a wide pH range (pH 5.0~9.0) suggests that the enzyme is potentially valuable for various industrial applications, especially for pulp bleaching pretreatment.

Keywords

References

  1. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Laboratory testing of method for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  2. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
  3. Berg, B., B. V. Hofsten, and G. Pettersson. 1972. Growth and cellulose formation by Cellvibrio fulvus. J. Appl. Bacteriol. 35: 201-214. https://doi.org/10.1111/j.1365-2672.1972.tb03691.x
  4. Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Claus, D. and R. C. W. Berkeley. 1986. Genus Bacillus Cohn 1872, $174^{AL}$, pp. 1105-1139. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2. Williams and Wilkins, Baltimore, USA.
  6. Collins, T., C. Gerday, and G. Feller. 2005. Xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  7. Jia, Ouyang, Shen Wang, Yan Wang, Xin Li, Mu Chen, Qiang Yong, and Shiyuan Yu. 2011. Production of a Trichoderma reesei QM9414 xylanase in Pichia pastoris and its application in biobleaching of wheat straw pulp. World J. Microbiol. Biotechnol. 27: 751-758. https://doi.org/10.1007/s11274-010-0512-6
  8. Kim, J. M., H. K. Park, D. Y. Yum, B. K. Hahm, D. H. Bai, and J. H. Yu. 1994. Nucleotide sequence of the pectate lyase gene from alkali-tolerant Bacillus sp. YA-14. Biosci. Biotechnol. Biochem. 58: 947-949. https://doi.org/10.1271/bbb.58.947
  9. Knob, A. and E. C. Carmona. 2009. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: A novel acidophilic xylanase. Appl. Biochem. Biotechnol. 162: 429-443.
  10. Ko, C. H., W. L. Chen, C. H. Tsai, W. N. Jane, C. C. Liu, and J. Tu. 2007. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresour. Technol. 98: 2727-2733. https://doi.org/10.1016/j.biortech.2006.09.034
  11. Ko, C.-H., C.-H. Tsaia, J. Tu, H.-Y. Lee, L.-T. Kua, P.-A. Kuod, and Y.-K. Lai. 2010. Molecular cloning and characterization of a novel thermostable xylanase from Paenibacillus campinasensis BL11. Process Biochem. 45: 1638-1644. https://doi.org/10.1016/j.procbio.2010.06.015
  12. Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  13. Maalej, Ines, Ines Belhaj, Najla Fourati Masmoudi, and Hafedh Belghith. 2009. Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: Purification and characterization. Appl. Biochem. Biotechnol. 158: 200-212. https://doi.org/10.1007/s12010-008-8317-x
  14. Menon, Gopalakrishnan, Kalpana Mody, Jitendra Keshri, and Bhavanath Jha. 2010. Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus Strain, GESF-1. Biotechnol. Bioprocess Eng. 15: 998-1005. https://doi.org/10.1007/s12257-010-0116-x
  15. Morag, E., E. A. Bayer, and R. Lamed. 1990. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol. 172: 6098-6105.
  16. Nakamura, S., R. Nakai, K. Namba, T. Kubo, K. Wakabayashi, R. Aono, and K. Horikoshi. 1995. Structure-function relationship of the xylanase from alkaliphilic Bacillus sp. strain 41M-1. Nucleic Acids Symp. 34: 99-100.
  17. Pason, Patthra, Akihiko Kosugi, Rattiya Waeonukul, Chakrit Tachaapaikoon, Khanok Ratanakhanokchai, Takamitsu Arai, Yoshinori Murata, Jun Nakajima, and Yutaka Mori. 2010. Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Appl. Microbiol. Biotechnol. 85: 573-580. https://doi.org/10.1007/s00253-009-2117-2
  18. Polizeli, M. L., A. C. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
  19. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 3nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  20. Shin, K., M. Jeya, J. K. Lee, and Y. S. Kim. 2010. Purification and characterization of a thermostable xylanase from Fomitopsis pinicola. J. Microbiol. Biotechnol. 20: 1415-1423. https://doi.org/10.4014/jmb.1003.03031
  21. Soren, Dhananjay, Mohanlal Jana, Subhabrata Sengupta, and Anil K. Ghosh. 2009. Purification and characterization of a low molecular weight endo-xylanase from mushroom Termitomyces clypeatus. Appl. Biochem. Biotechnol. 162: 373-389.
  22. Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7. https://doi.org/10.1111/j.1574-6968.2000.tb08925.x
  23. Suzuki, M. T. and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630.
  24. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  25. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki. 2003. Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review. Process Biochem. 38: 1327-1340. https://doi.org/10.1016/S0032-9592(02)00331-X
  26. Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Meth. Enzymol. 160: 59-74.
  27. Zhao, Y., K. Meng, H. Luo, P. Yang, P. Shi, H. Huang, Y. Bai, and B. Yao. 2011. Cloning, expression, and characterization of a new xylanase from alkalophilic Paenibacillus sp. 12-11. J. Microbiol. Biotechnol. 21: 861-868. https://doi.org/10.4014/jmb.1102.02024

Cited by

  1. 용인 함박산 토양에서 분리한 Paenibacillus sp. HX-1의 동정과 endo-${\beta}$-1,4-xylanase 생산 증가를 위한 배지최적화 vol.41, pp.3, 2012, https://doi.org/10.4014/kjmb.1304.04001
  2. Purification and Characterization of a Thermostable Xylanase from Paenibacillus sp. NF1 and its Application in Xylooligosaccharides Production vol.24, pp.4, 2014, https://doi.org/10.4014/jmb.1312.12072
  3. Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis vol.41, pp.1, 2012, https://doi.org/10.1007/s10295-013-1363-6
  4. Studies on properties of the xylan-binding domain and linker sequence of xylanase XynG1-1 from Paenibacillus campinasensis G1-1 vol.42, pp.12, 2012, https://doi.org/10.1007/s10295-015-1698-2
  5. Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp vol.7, pp.1, 2012, https://doi.org/10.1007/s13205-017-0615-y
  6. Paenibacillus woosongensis의 Xylanase 11B 유전자 클로닝과 특성분석 vol.45, pp.2, 2012, https://doi.org/10.4014/mbl.1704.04001
  7. Increase in the Production of Endo-1,4-β-Xylanase from Paenibacillus brasilensis in Pichia pastoris vol.35, pp.6, 2012, https://doi.org/10.21519/0234-2758-2019-35-6-30-38
  8. Xylan deterioration approach: Purification and catalytic behavior optimization of a novel β-1,4-D-xylanohydrolase from Geobacillus stearothermophilus KIBGE-IB29 vol.21, pp.None, 2012, https://doi.org/10.1016/j.btre.2018.e00299
  9. Production, characteristics, and biotechnological applications of microbial xylanases vol.103, pp.21, 2019, https://doi.org/10.1007/s00253-019-10108-6
  10. New Biotransformation Mode of Zearalenone Identified in Bacillus subtilis Y816 Revealing a Novel ZEN Conjugate vol.69, pp.26, 2021, https://doi.org/10.1021/acs.jafc.1c01817
  11. Paecilomyces variotii xylanase production, purification and characterization with antioxidant xylo-oligosaccharides production vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-95965-w
  12. Identification and characterization of a thermostable GH11 xylanase from Paenibacillus campinasensis NTU-11 and the distinct roles of its carbohydrate-binding domain and linker sequence vol.209, pp.p1, 2012, https://doi.org/10.1016/j.colsurfb.2021.112167