DOI QR코드

DOI QR Code

Influence of Nanoporous Oxide Substrate on the Performance of Photoelectrode in Semiconductor-Sensitized Solar Cells

  • Bang, Jin Ho (Department of Chemistry and Applied Chemistry, Hanyang University)
  • Received : 2012.07.28
  • Accepted : 2012.09.22
  • Published : 2012.12.20

Abstract

Oxide substrates in semiconductor-sensitized solar cells (SSSCs) have a great impact on their performance. $TiO_2$ has long been utilized as an oxide substrate, and other alternatives such as ZnO and $SnO_2$ have also been explored due to their superior physical properties over $TiO_2$. In the development of high-performance SSSCs, it is of significant importance to understand the effect of oxides on the electron injection and charge recombination as these two are major factors in dictating solar cell performance. In addition, elucidating the relationship between these two critical processes and solar cell performance in each oxide is critical in building up the basic foundation of SSSCs. In this study, ultrafast pump-probe laser spectroscopy and open-circuit decay analysis were conducted to examine the characteristics of three representative oxides ($TiO_2$, ZnO, and $SnO_2$) in terms of electron injection kinetics and charge recombination, and the implication of results is discussed.

Keywords

References

  1. Hodes, G. J. Phys. Chem. C 2008, 112, 17778. https://doi.org/10.1021/jp803310s
  2. Kamat, P. V.; Tvrdy, K.; Baker, D. R.; Radich, J. G. Chem. Rev. 2010, 110, 6664. https://doi.org/10.1021/cr100243p
  3. Hod, I.; Gonzalez-Pedro, V.; Tachan, Z.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J.; Zaban, A. J. Phys. Chem. Lett. 2011, 2, 3032. https://doi.org/10.1021/jz201417f
  4. Yang, Z.; Chen, C.-Y.; Roy, P.; Chang, H.-T. Chem. Commun. 2011, 47, 9561. https://doi.org/10.1039/c1cc11317h
  5. Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183. https://doi.org/10.1021/j100063a022
  6. Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. https://doi.org/10.1021/jp806791s
  7. Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467. https://doi.org/10.1021/nn900324q
  8. Ji, I. A.; Park, M.-J.; Jung, J.-Y.; Choi, M. J.; Lee, Y.-W.; Lee, J.- H.; Bang, J. H. Bull. Korean Chem. Soc. 2012, 33, 2200. https://doi.org/10.5012/bkcs.2012.33.7.2200
  9. Peter, L. Acc. Chem. Res. 2009, 42, 1839. https://doi.org/10.1021/ar900143m
  10. Mora-Seroì, I.; Bisquert, J. Nano Lett. 2003, 3, 945. https://doi.org/10.1021/nl0342390
  11. Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. ACS Nano 2011, 5, 5158. https://doi.org/10.1021/nn201243y
  12. Snaith, H. J.; Ducati, C. Nano Lett. 2010, 10, 1259. https://doi.org/10.1021/nl903809r
  13. Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Nano Lett. 2007, 7, 1793. https://doi.org/10.1021/nl070430o
  14. Hossain, M. A.; Jennings, J. R.; Koh, Z. Y.; Wang, Q. ACS Nano 2011, 5, 3172. https://doi.org/10.1021/nn200315b
  15. Mora-Seroì, I.; Bisquert, J. J. Phys. Chem. Lett. 2010, 1, 3046. https://doi.org/10.1021/jz100863b
  16. Fessenden, R. W.; Kamat, P. V. J. Phys. Chem. 1995, 99, 12902. https://doi.org/10.1021/j100034a032
  17. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 4818. https://doi.org/10.1021/jp031260g
  18. Nonoguchi, Y.; Nakashima, T.; Kawai, T. Small 2009, 5, 2403. https://doi.org/10.1002/smll.200900571
  19. Zhang, J.; Tang, C.; Bang, J. H. Electrochem. Commun. 2010, 12, 1124. https://doi.org/10.1016/j.elecom.2010.05.046
  20. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385. https://doi.org/10.1021/ja056494n
  21. Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Proc. Nat. Acad. Sci. U.S.A. 2011, 108, 29. https://doi.org/10.1073/pnas.1011972107
  22. Dibbell, R. S.; Youker, D. G.; Watson, D. F. J. Phys. Chem. C 2009, 113, 18643. https://doi.org/10.1021/jp9079469
  23. Asbury, J. B.; Hao, E.; Wang, Y.; Ghosh, H. N.; Lian, T. J. Phys. Chem. B 2001, 105, 4545. https://doi.org/10.1021/jp003485m
  24. Stockwell, D.; Yang, Y.; Huang, J.; Anfuso, C.; Huang, Z.; Lian, T. J. Phys. Chem. C 2010, 114, 6560. https://doi.org/10.1021/jp912133r
  25. Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 5585. https://doi.org/10.1021/jp004121x
  26. Green, A. N. M.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. J. Phys. Chem. B 2005, 109, 12525. https://doi.org/10.1021/jp050145y
  27. Quintana, M.; Edvinsson, T.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2006, 111, 1035.
  28. Bang, J. H.; Kamat, P. V. Adv. Funct. Mater. 2010, 20, 1970. https://doi.org/10.1002/adfm.200902234
  29. Liu, D.; Kamat, P. V. J. Phys. Chem. 1993, 97, 10769. https://doi.org/10.1021/j100143a041
  30. Martinez-Ferrero, E.; Mora-Seroì, I.; Albero, J.; Gimenez, S.; Bisquert, J.; Palomares, E. Phys. Chem. Chem. Phys. 2010, 12, 2819. https://doi.org/10.1039/b924970b
  31. Chakrapani, V.; Baker, D.; Kamat, P. V. J. Am. Chem. Soc. 2011, 133, 9607. https://doi.org/10.1021/ja203131b
  32. Bang, J. H.; Kamat, P. V. ACS Nano 2011, 5, 9421. https://doi.org/10.1021/nn204350w
  33. Guijarro, N. S.; Shen, Q.; Gimeìnez, S.; Mora-Seroì, I.; Bisquert, J.; Lana-Villarreal, T.; Toyoda, T.; Goìmez, R. J. Phys. Chem. C 2010, 114, 22352. https://doi.org/10.1021/jp108499h
  34. Mora-Seroì, I.; Gimeìnez, S.; Fabregat-Santiago, F.; Goìmez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Acc. Chem. Res. 2009, 42, 1848. https://doi.org/10.1021/ar900134d
  35. Zaban, A.; Greenshtein, M.; Bisquert, J. ChemPhysChem 2003, 4, 859. https://doi.org/10.1002/cphc.200200615
  36. Sudhagar, P.; Song, T.; Lee, D. H.; Mora-Seroì, I.; Bisquert, J.; Laudenslager, M.; Sigmund, W. M.; Park, W. I.; Paik, U.; Kang, Y. S. J. Phys. Chem. Lett. 2011, 2, 1984. https://doi.org/10.1021/jz200848v

Cited by

  1. Triple-Yolked ZnO/CdS Hollow Spheres for Semiconductor-Sensitized Solar Cells vol.31, pp.7, 2014, https://doi.org/10.1002/ppsc.201300365
  2. New Insight into Copper Sulfide Electrocatalysts for Quantum Dot-Sensitized Solar Cells: Composition-Dependent Electrocatalytic Activity and Stability vol.6, pp.24, 2014, https://doi.org/10.1021/am505473d
  3. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction vol.17, pp.15, 2015, https://doi.org/10.1039/C5CP00941C
  4. Revival of Solar Paint Concept: Air-Processable Solar Paints for the Fabrication of Quantum Dot-Sensitized Solar Cells vol.121, pp.33, 2017, https://doi.org/10.1021/acs.jpcc.7b05207
  5. Thiolated Gold Nanoclusters for Light Energy Conversion vol.3, pp.n, 2012, https://doi.org/10.1021/acsenergylett.8b00070
  6. Ag(I)-Thiolate-Protected Silver Nanoclusters for Solar Cells: Electrochemical and Spectroscopic Look into the Photoelectrode/Electrolyte Interface vol.11, pp.13, 2019, https://doi.org/10.1021/acsami.9b00049