References
- Joseph, T.; Kumar, K. V.; Ramaswamy, A. V.; Halligudi, S. B. Catal. Commun. 2007, 8, 629. https://doi.org/10.1016/j.catcom.2006.03.004
- Khan, F. A.; Dash, J.; Sudheer, C.; Gupta, R. K. Tetrahedron Lett. 2003, 44, 7783. https://doi.org/10.1016/j.tetlet.2003.08.080
- Rai, G.; Jeong, J. M.; Lee, Y. S.; Kim, H. W.; Lee, D. S.; Chung, J. K.; Leea, M. C. Tetrahedron Lett. 2005, 46, 3987. https://doi.org/10.1016/j.tetlet.2005.04.035
- Figueras, F.; Coq, B. J. Mol. Catal. A: Chem. 2001, 173, 223. https://doi.org/10.1016/S1381-1169(01)00151-0
- Tan, X. Y.; Zhang, Z. X.; Xiao, Z. H.; Xu, Q.; Liang, C. H.; Wang, X. H. Catal. Lett. 2012, 142, 788. https://doi.org/10.1007/s10562-012-0821-5
- Zheng, Y. F.; Ma, K.; Wang, H. L.; Sun, X.; Jiang, J.; Wang, C. F.; Li, R.; Ma, J. T. Catal. Lett. 2008, 124, 268. https://doi.org/10.1007/s10562-008-9452-2
- Lagrost, C.; Preda, L.; Volanschi, E.; Hapiot, P. J. Electroanal. Chem. 2005, 585, 1. https://doi.org/10.1016/j.jelechem.2005.06.013
- Magdalene, R. M.; Leelamani, E. G.; Nanje, G. N. M. J. Mol.Catal A: Chem. 2004, 223, 17. https://doi.org/10.1016/j.molcata.2003.12.041
- Cardenas-Lizana, F.; Gomez-Quero, S.; Keane, M. A. Catal. Commun. 2008, 9, 475. https://doi.org/10.1016/j.catcom.2007.07.032
- Vilella, I. M. J.; Miguel, S. R.; Scelza, O. A. Chem. Eng. J. 2005, 114, 33. https://doi.org/10.1016/j.cej.2005.08.011
- Kuroda, K.; Ishida, T.; Haruta, M. J. Mol. Catal A: Chem. 2009, 298, 7. https://doi.org/10.1016/j.molcata.2008.09.009
- Swathi, T.; Buvaneswari, G. Materials Lett. 2008, 62, 3900. https://doi.org/10.1016/j.matlet.2008.05.028
- Kumar, P. S.; Rai, K. L. Chemical Papers 2012, 66, 772. https://doi.org/10.2478/s11696-012-0195-6
- Gowda, S.; Gowda, D. C. Tetrahedron. 2002, 58, 2211. https://doi.org/10.1016/S0040-4020(02)00093-5
- Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400. https://doi.org/10.1002/anie.200300594
- Reymond, S.; Cossy, J. Chem. Rev. 2008, 108, 5359. https://doi.org/10.1021/cr078346g
- Qiu, G. M.; Wang, C. J.; Zhang, Y. J.; Huang, S.; Liu, X. L.; Zhang, B. J.; Zhou, X. L. Bull. Korean Chem. Soc. 2012, 33, 2603. https://doi.org/10.5012/bkcs.2012.33.8.2603
- Lu, L.; Sui, M. L.; Lu, K. Science 2000, 287, 1463. https://doi.org/10.1126/science.287.5457.1463
- Safaei-Ghomi, J.; Ziarati, A.; Teymuri, R. Bull. Korean Chem. Soc. 2012, 33, 2679. https://doi.org/10.5012/bkcs.2012.33.8.2679
- Ranjit, S.; Duan, Z.; Zhang, P.; Liu, X. Org. Lett. 2010, 12, 4134. https://doi.org/10.1021/ol101729k
- Khan, F. A.; Dash, J.; Sudheer, C.; Gupta, R. K. Tetrahedron Lett. 2003, 44, 7783. https://doi.org/10.1016/j.tetlet.2003.08.080
- Chaubal, N. S.; Sawant, M. R. J. Mol. Catal A: Chem. 2007, 261, 232. https://doi.org/10.1016/j.molcata.2006.06.033
Cited by
- Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications vol.35, pp.9, 2013, https://doi.org/10.1007/s10529-013-1239-x
- Synthesis of Ag-SiO2 composite nanospheres and their catalytic activity vol.57, pp.6, 2014, https://doi.org/10.1007/s11426-014-5068-0
- Green synthesis of stable Cu(0) nanoparticles onto reduced graphene oxide nanosheets: a reusable catalyst for the synthesis of symmetrical biaryls from arylboronic acids under base-free conditions vol.5, pp.2, 2015, https://doi.org/10.1039/C4CY01229A
- Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials vol.5, pp.92, 2015, https://doi.org/10.1039/C5RA11421G
- Creating a developed surface of copper electrolytic coatings via mechanical activation of the cathode with subsequent thermal treatment vol.79, pp.9, 2015, https://doi.org/10.3103/S1062873815090099
- Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis vol.116, pp.6, 2016, https://doi.org/10.1021/acs.chemrev.5b00482
- Greener approach for synthesis of monodispersed palladium nanoparticles using aqueous extract of green tea and their catalytic activity for the Suzuki-Miyaura coupling reaction and the reduction of nitroarenes vol.31, pp.6, 2017, https://doi.org/10.1002/aoc.3609
- Biosynthesis, characterization and catalytic activity of an Ag/zeolite nanocomposite for base- and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of a variety of dyes at room temperature vol.40, pp.3, 2016, https://doi.org/10.1039/C5NJ02909K
- O–Cu–CuO nanocomposite: a catalyst with intriguing activity vol.45, pp.7, 2016, https://doi.org/10.1039/C5DT03859F
- /EP.EN.EG as reusable nanocatalyst for the reduction of nitro compounds vol.6, pp.23, 2016, https://doi.org/10.1039/C5RA26020E
- Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: high catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue vol.81, pp.3, 2017, https://doi.org/10.1007/s10971-016-4239-1
- Synthesis of Heterocycles Catalyzed by Iron Oxide Nanoparticles vol.94, pp.4, 2017, https://doi.org/10.3987/REV-16-854
- Green Luminescent Copper Nanoparticles vol.149, pp.1757-899X, 2016, https://doi.org/10.1088/1757-899X/149/1/012187
- Synthesis, Characterization, Crystal Structure and Supramolecular Interactions of a New Ni(II) Compound Based on l-Histidine and Dipicolinic Acid; New Solid State Precursor for NiO Nanoparticles and Its Catalytic Activity for Nitrophenol Reduction pp.1574-1451, 2019, https://doi.org/10.1007/s10904-018-1022-5
- Surprisingly high sensitivity of copper nanoparticles toward coordinating ligands: consequences for the hydride reduction of benzaldehyde vol.8, pp.19, 2018, https://doi.org/10.1039/C8CY01516C
- Efficient catalytic reduction of nitroarenes and organic dyes in water by synthesized Ag/diatomite nanocomposite using Alocasia macrorrhiza leaf extract vol.29, pp.19, 2018, https://doi.org/10.1007/s10854-018-9802-9
- ) magnetically recyclable nanocomposites: Synthesis, characterization and enhanced catalytic performance for the reduction of nitrophenols and nitroanilines pp.02682605, 2018, https://doi.org/10.1002/aoc.4518
- Highly active copper catalyst obtained through rapid MOF decomposition vol.6, pp.2, 2019, https://doi.org/10.1039/C8QI01217B
- Synergistic effect of bimetallic Cu:Ni nanoparticles for the efficient catalytic conversion of 4-nitrophenol vol.43, pp.7, 2019, https://doi.org/10.1039/C8NJ05649H
- Reduction of aromatic nitro compounds catalyzed by biogenic CuO nanoparticles vol.4, pp.95, 2014, https://doi.org/10.1039/c4ra10397a
- Reduction of aromatic nitro compounds catalyzed by biogenic CuO nanoparticles vol.4, pp.95, 2014, https://doi.org/10.1039/c4ra10397a
- Ultrafine Copper Nanoparticles Exhibiting a Powerful Antifungal/Killing Activity Against Corticium Salmonicolor vol.35, pp.9, 2012, https://doi.org/10.5012/bkcs.2014.35.9.2645
- Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? vol.1, pp.1, 2012, https://doi.org/10.1007/s41204-016-0004-5
- The Influential Factors on Antibacterial Behaviour of Copper and Silver Nanoparticles vol.58, pp.3, 2016, https://doi.org/10.1080/00194506.2015.1026950
- Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nit vol.465, pp.None, 2016, https://doi.org/10.1016/j.jcis.2015.11.060
- Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes vol.466, pp.None, 2012, https://doi.org/10.1016/j.jcis.2015.12.036
- Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes vol.490, pp.None, 2012, https://doi.org/10.1016/j.jcis.2016.11.032
- Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and C-C coupling reaction vol.48, pp.3, 2012, https://doi.org/10.1080/24701556.2018.1503676
- Flower-like 3-dimensional hierarchical Co3O4/NiO microspheres for 4-nitrophenol reduction reaction vol.1, pp.1, 2012, https://doi.org/10.1039/c8na00029h
- Green synthesis of the Ag/Al2O3 nanoparticles using Bryonia alba leaf extract and their catalytic application for the degradation of organic pollutants vol.30, pp.4, 2012, https://doi.org/10.1007/s10854-019-00668-8
- Phytosynthesis of Cu/rGO using Euphorbia cheiradenia Boiss extract and study of its ability in the reduction of organic dyes and 4‐nitrophenol in aqueous medium vol.13, pp.2, 2012, https://doi.org/10.1049/iet-nbt.2018.5175
- Nano NiO/AlMCM‐41, a green synergistic, highly efficient and recyclable catalyst for the reduction of nitrophenols vol.33, pp.5, 2019, https://doi.org/10.1002/aoc.4864
- Characterization and application of Cu based superhydrophobic catalyst vol.29, pp.4, 2019, https://doi.org/10.1016/j.pnsc.2019.08.002
- Salep as a biological source for the synthesis of biochar with utility for the catalysis vol.33, pp.8, 2012, https://doi.org/10.1002/aoc.4990
- Combination of polymer and halloysite chemistry for development of a novel catalytic hybrid system vol.45, pp.9, 2012, https://doi.org/10.1007/s11164-019-03835-y
- Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction vol.9, pp.9, 2012, https://doi.org/10.3390/catal9090737
- Michael Addition Reaction Catalyzed by Imidazolium Chloride to Protect Amino Groups and Construct Medium Ring Heterocycles vol.24, pp.23, 2012, https://doi.org/10.3390/molecules24234224
- Catalytic Efficiency of Biosynthesized Silver Nanoparticles in Synthesis of Chromones and Reduction of Nitro Aromatics vol.4, pp.48, 2012, https://doi.org/10.1002/slct.201903001
- Efficient synthesis of palladium nanoparticles using guar gum as stabilizer and their applications as catalyst in reduction reactions and degradation of azo dyes vol.9, pp.1, 2012, https://doi.org/10.1515/gps-2020-0008
- Efficient synthesis of palladium nanoparticles using guar gum as stabilizer and their applications as catalyst in reduction reactions and degradation of azo dyes vol.9, pp.1, 2012, https://doi.org/10.1515/gps-2020-0008
- Glycerol: An Optimal Hydrogen Source for Microwave-Promoted Cu-Catalyzed Transfer Hydrogenation of Nitrobenzene to Aniline vol.8, pp.None, 2012, https://doi.org/10.3389/fchem.2020.00034
- Synthesis and characterization of a novel TEMPO@FeNi3/DFNS-laccase magnetic nanocomposite for the reduction of nitro compounds vol.10, pp.46, 2012, https://doi.org/10.1039/d0ra03989f
- Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III) vol.10, pp.8, 2012, https://doi.org/10.3390/nano10081552
- Energetic decomposition yields efficient bimetallic Cu MOF-derived catalysts vol.8, pp.30, 2012, https://doi.org/10.1039/d0ta04765a
- Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity vol.11, pp.4, 2012, https://doi.org/10.3390/biom11040564
- Development of highly active, chemically stable and recyclable magnetic nanophotocatalyst based on plasmonic silver nanoparticles and photosensitive trans‐3‐(trans‐4‐imidazolyl vol.35, pp.6, 2012, https://doi.org/10.1002/aoc.6229
- Copper metallic nanoparticles capped with PEGylated PAMAM-G3 dendrimers for the catalytic reduction of low solubility nitroarenes of pharmaceutical interest vol.372, pp.None, 2012, https://doi.org/10.1016/j.cattod.2020.11.011
- Highly porous copper-supported magnetic nanocatalysts: made of volcanic pumice textured by cellulose and applied for the reduction of nitrobenzene derivatives vol.11, pp.41, 2012, https://doi.org/10.1039/d1ra03538j
- Catalytic performance of copper(II) Schiff base complex immobilized on Fe3O4 nanoparticles in synthesis of 2-amino-4H-benzo[h] chromenes and reduction of 4-nitrophenol vol.1253, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2021.132102