Abstract
Ship object detection is a technique to detect the existence and the location of ship when ship objects are shown on input image sequence, and there are wide variations in accuracy due to environmental changes and noise of input image. In order to solve this problem, in this paper, we propose multiple ship object detection based on background registration technique and morphology operation. The proposed method consists of the following five steps: background elimination step, noise elimination step, object standard position setting step, object restructure step, and multiple object detection steps. The experimental results show accurate and real-time ship detection for 15 different test sequences with a detection rate of 98.7%, and robustness against variable environment. The proposed method may be helpful as the base technique of sea surface monitoring or automatic ship sailing.
선박 객체 검출 기술은 입력된 비디오 및 영상 데이터에서 선박 객체가 존재하는 경우 선박의 위치를 검출하는 기술로서 입력 영상의 환경 변화와 잡음의 영향에 따라서 검출 정확도의 편차가 높다. 이런 문제점을 해결하기 위하여 본 논문에서는 배경 구축 기법과 형태학적 연산 기반의 다중 선박 객체 검출 기술을 제안한다. 제안하는 방법은 배경 제거 단계, 잡음 제거 단계, 객체 기준 위치 설정 단계, 객체 재구성 단계, 다중 객체 검출 단계 등 5단계를 거쳐서 선박을 검출한다. 다양한 변수를 고려한 15가지 실험 비디오를 대상으로 한 실험을 통해서 98.7%의 검출율을 나타내었으며, 환경 변화에 강인한 검출을 수행하는 것을 확인할 수 있었다. 제안하는 방법은 해상 관제와 선박 자동 운항 기술의 기반 기술로서 유용하게 사용될 수 있다.