DOI QR코드

DOI QR Code

어긋나기배열 직교류 열교환기의 열전달특성에 관한 연구

A Study on Heat Transfer Characteristics for Cross Flow Heat Exchanger of Staggered Arrangement

  • 유재환 (가천대학교 대학원 기계공학과) ;
  • 윤준규 (가천대학교 기계.자동차공학과)
  • 투고 : 2012.09.07
  • 심사 : 2012.11.20
  • 발행 : 2012.11.30

초록

열교환기는 다수의 원관으로 구성하고 있기 때문에 원관 주위에서 국소열전달과 압력강하의 해석, 크기의 성능과 추산, 경제성으로 설계 시 중요한 역할을 한다. 본 연구에서는 어긋나기배열 직교류 열교환기에서 물의 온도 및 공기량 변화에 따른 대류열전달계수, 대수평균온도차, 압력손실 등을 고찰하기 위하여 실험 및 해석을 수행하였다. 본 열교환기는 관군이 5행 7열 어긋나기배열로서 구성하였으며, 실험 및 해석 조건은 물의 온도는 $40^{\circ}C{\sim}65^{\circ}C$ 범위이고, 공기량은 $5.0{\sim}12.3m^3/s$ 범위이다. 그 결과로서 물의 온도 및 유량을 증가함에 따라 공기밀도가 감소하여 유속도 낮아지는 특성을 보여 레이놀즈수가 감소하고, 공기량 증대로 평균열전달계수가 증가하여 전열성능은 향상됨을 알 수 있었고, 압력손실도 증가하였다. 그리고 해석결과로서는 열전달율의 경우는 약 8~12%, 압력강하는 약 0.01~7.5% 오차를 나타내어 본 연구의 적합성을 평가할 수 있었다.

Because heat exchanger consists of many circular tubes, the analysis of local heat transfer and pressure drop at the surrounding of circular tubes, performance and calculation of size, economics play important roles in design. In this study, This study conducted experiment and analysis in order to observe convective heat transfer coefficient LMTD (logarithm mean temperature difference) and pressure losses according to water temperature and air flow rate using a cross flow heat exchanger of staggered arrangement. This heat exchanger was composed of staggered arrangement for five rows and seven columns of tube banks, and the condition of experiment and analysis are $40{\sim}65^{\circ}C$ of water temperature and $5.0{\sim}12.3m^3/s$ of air flow rate. As a result of it, since air density decreases as water temperature and flow rate increases, Reynolds number decreases with characteristics of low flow velocity but mean heat transfer coefficient increases with air flow rate increase, heat transfer performance has been improved and pressure losses decreased. And since heat transfer rate shows about 8~12% and pressure drop around 0.01~7.5% error as the analysis result, the feasibility of this study could be evaluated.

키워드

과제정보

연구 과제 주관 기관 : 가천대학교

참고문헌

  1. A. Zhukauskas, Heat Transfer of Cylinder Flow, Hemisphere Publishing Co., 1985.
  2. S.-Y. Yoo, H.-K. Kwon, K.-I. Jang, and J.-T. Park, "A study on local heat transfer characteristics for cross flow heat exchanger of in-line arrangement", Fall Proceeding of the Korean Society of Mechanical Engineering, pp. 2023-2028, 2006(in Korean).
  3. Z. G. Kostic and N. S. Oka, "Fluid flow and heat transfer with two cylinders in cross flow", International Journal of Heat and Mass Transfer, vol. 15, pp. 279-299, 1972. https://doi.org/10.1016/0017-9310(72)90075-0
  4. E. Buyruk, "Numerical study of heat transfer characteristics on tandem cylinders, in-line and staggered tube banks in cross flow of air", International Communications in Heat and Mass Transfer, vol. 29, no. 3. pp. 355-366, 2002. https://doi.org/10.1016/S0735-1933(02)00325-1
  5. V. C. Smith and R. A. Troupe, "Pressure drop studies in a plate heat exchanger", American Institute of Chemical Engineers Journal, vol. 11, pp. 487-491, 1965. https://doi.org/10.1002/aic.690110323
  6. A. Cooper, "Recover more heat with plate heat exchangers", International Journal of the Chemical Engineer, vol. 285, pp. 280-285. 1974.
  7. M. F. Edwards, A. A. Changal Vaie and P. L. Parrott, "Heat transfer and pressure drop characteristics of a plate heat exchanger using Newtonian and non-Newtonian liquids", International Journal of the Chemical Engineer, vol. 285, pp. 286-288. 1974.
  8. B. Debusschere, "Measurement of friction, heat transfer and mass transfer in a severely outgassing tube banks", International Journal of Heat and Fluid Flow, pp. 3015-3024, 1998.
  9. S. Aiba, H. Tsuchida and T. Ota, "Heat transfer around tubes in in-line tube banks", Bulletin of JSME, vol. 25, no. 204, pp. 919-926, 1982. https://doi.org/10.1299/jsme1958.25.919
  10. Y.-H. Jeon, N.-J. Kim and C.-B. Kim, "A study on the performance of a cross flow heat exchanger by tube array change", Journal of the Korean Society for Energy Engineering, vol. 15, no. 1, pp. 28-34, 2006(in Korean).
  11. T. H. Shih, W. W. Liou, A. Shabbir and J. Zhu. A, "A new $\kappa-\epsilon$ eddy-viscosity model for hight Reynolds number turbulent flows model development and validation", International Journal of Computer Fluids, vol. 24, no.3, pp. 227-238, 1995. https://doi.org/10.1016/0045-7930(94)00032-T
  12. C.-H. Jeon, G.-H. Jang, H.-G. No, and K.-B. Lim, Heat Transfer, Bosunggak Pub., pp. 223-230, 2008(in Korean).