DOI QR코드

DOI QR Code

Application of nonlocal elasticity theory for buckling analysis of nano-scale plates

나노 스케일 판의 좌굴해석을 위한 비국소 탄성 이론의 적용

  • Lee, Won-Hong (Department of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Han, Sung-Cheon (Department of Civil & Railroad Engineering, Daewon University College) ;
  • Park, Weon-Tae (Division of Construction and Environmental Engineering, Kongju National University)
  • 이원홍 (경남과학기술대학교 토목공학과) ;
  • 한성천 (대원대학교 철도건설과) ;
  • 박원태 (공주대학교 건설환경공학부)
  • Received : 2012.08.03
  • Accepted : 2012.11.08
  • Published : 2012.11.30

Abstract

Third-order shear deformation theory is reformulated using the nonlocal elasticity of Eringen. The equation of equilibrium of the nonlocal elasticity are derived. This theory has ability to capture the both small scale effects and quadratic variation of shear strain through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported boundary conditions. Analytical solutions of buckling of nano-scale plates are presented using this theory to illustrate the effect of nonlocal theory on buckling load of the nano-scale plates. The relations between nonlocal third-order and local theories are discussed by numerical results. Further, effects of (i) length (ii) nonlocal parameter, (iii) aspect ratio and (iv) mode number on nondimensional buckling load are studied. In order to validate the present solutions, the reference solutions are used and discussed. The present results of nano-scale plates using the nonlocal theory can provide a useful benchmark to check the accuracy of related numerical solutions.

Eringen의 비국소 탄성이론을 이용한 3차 전단변형이론을 정식화 하였고 비국소 탄성이론이 적용된 평형방정식을 유도하였다. 비국소 탄성 이론은 미소 규모 효과를 고려할 수 있고 3차원 전단변형이론은 나노 판의 두께방향으로의 전단변형률과 전단응력의 곡선변화 효과를 고려할 수 있다. 모든 변이 단순지지된 나노-스케일 판의 지배방정식을 풀기 위해 Navier 방법을 사용하였다. 비국소 변수의 효과를 나타내기 위한 나노-스케일 판의 해석적 좌굴하중을 제시하였다. 국소 탄성이론과의 관계를 수치해석 결과를 통하여 고찰하였다. 또한 (i) 나노-스케일 판의 크기, (ii) 비국소 계수, (iii) 형상비 그리고 (iv) 모드 수 등이 나노-스케일 판의 무차원 좌굴하중에 미치는 효과에 대하여 관찰하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였으며 해석결과는 참고문헌의 결과들과 잘 일치함을 알 수 있었다. 비국소 이론에 의한 나노-스케일 판의 좌굴해석에 관한 연구는 향후 관련연구에 비교자료로 활용될 수 있을 것이다.

Keywords

References

  1. J. N. Reddy, S. D. Pang, "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., Vol. 103, pp. 023511-023527, 2008. https://doi.org/10.1063/1.2833431
  2. H. Heireche, A. Tounsi, A. Benzai, M. Maachou, E. A. Adda Bedia. "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity". Physica E, Vol. 40, pp. 2791-2799, 2008. https://doi.org/10.1016/j.physe.2007.12.021
  3. K. Behfar, R. Naghdabadi, "Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium", Compos. Sci. Technol., Vol. 65, pp. 1159-1164, 2005. https://doi.org/10.1016/j.compscitech.2004.11.011
  4. R. Aghababaei, J. N. Reddy, "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., Vol. 326, pp. 277-289, 2009. https://doi.org/10.1016/j.jsv.2009.04.044
  5. A. C. Eringen, "Nonlocal polar elastic continua", Int. J. Eng. Sci., Vol. 10, pp. 1-6, 1972. https://doi.org/10.1016/0020-7225(72)90070-5
  6. A. C. Eringen, "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., Vol. 54, pp. 4703-4710, 1983. https://doi.org/10.1063/1.332803
  7. A. C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002.
  8. H. Lu, H. Sun, A. Mao, H. Yang, H. Wang, X. Hu, "Preparation of plate-like nano a-Al2O3 using nano-aluminium seeds by wet-chemical methods", Mater. Sci. Eng., Vol. 406, pp. 19-23, 2005. https://doi.org/10.1016/j.msea.2005.04.047
  9. T. Sumitomo, H. Kakisawa, Y. Owaki, Y. Kagawa, "Structure of natural nano-laminar composites", Mater. Sci. Eng., Vol. 561, pp. 713-716, 2007.
  10. W. H. Lee, S. C. Han, W. T. Park, "Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates, J. Korea Academia-Industrial cooperation Society, Vol. 9(4), pp. 1043- 1049, 2008. https://doi.org/10.5762/KAIS.2008.9.4.1043
  11. J. N. Reddy, "A simple higher-order theory for laminated composite plates", J. Appl. Mech., Vol. 51, pp. 745-752, 1984. https://doi.org/10.1115/1.3167719
  12. J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, seconded, CRC Press, London, 2007.
  13. S. Narendar, D. R. Mahapatra, S. Gopalakrishnan, "Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation ", Int. J. Eng. Sci., Vol. 49, pp. 509-522, 2011. https://doi.org/10.1016/j.ijengsci.2011.01.002
  14. S. Narendar, "Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., Vol. 93, pp. 3093-3103, 2011. https://doi.org/10.1016/j.compstruct.2011.06.028
  15. S. P. Timoshenko, J. M. Gere, Theory of Elastic Stablity, Second Ed, McGraw-Hill, London, 1963.
  16. B. Babaei, A. R. Shahidi, "Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method", Arch. Appl. Mech., Vol. 81, pp. 1051-1062, 2011. https://doi.org/10.1007/s00419-010-0469-9
  17. Q. Wang, C. M. Wang. "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes". Nanotechnology, Vol. 18, pp. 075702-075709, 2007. https://doi.org/10.1088/0957-4484/18/7/075702

Cited by

  1. Nonlocal elasticity effects on free vibration properties of sigmoid functionally graded material nano-scale plates vol.15, pp.2, 2014, https://doi.org/10.5762/KAIS.2014.15.2.1109