DOI QR코드

DOI QR Code

Characterization and Culture Optimization of an Glucosidase Inhibitor-producing Bacteria, Gluconobactor oxydans CK-2165

α-Glucosidase 저해제 생산 균주, Gluconobacter oxydans CK-2165의 특성 및 배양 최적화

  • Received : 2012.10.08
  • Accepted : 2012.11.08
  • Published : 2012.11.30

Abstract

Miglitol, a well-known therapeutic intervention agents for diabetes, exhibits competitive inhibitory activity against ${\alpha}$-glucosidase and it is usually produced through three sequential steps including chemical and bioconversion processes. Gluconobactor oxydans (G. oxydans) belonging to acetic acid bacteria biologically, converts 1-deoxy-1-(2-hydroxyethylamino)-D-glucitol (P1) into a key intermidiate, 6-(2-hydroxyetyl) amino-6-deoxy-${\alpha}$-L-sorbofuranose (P2) by incomplete oxidation. In this study, we identified and optimized fermentation conditions of CK-2165, that was selected in soil samples by comparing the bioconversion yield. CK-2165 strain was found to be closely related to G. oxydans based on the result of phylogenetic analysis using 16S rDNA sequence. Utilization of API 20 kits revealed that this strain could use glucose, mannose, inositol, sorbitol, rhamnose, sucrose, melibiose, amygdalin and arabinose as carbon sources. The culture conditions were optimized for industrial production and several important factors affecting bioconversion rate were also tested using mycelial cake. Cell harvested at the late-stationary phase showed the highest bioconversion yield and $MgSO_4$ was critically required for the catalytic activity.

본 논문은 당뇨병 치료제로 알려진 Miglitol은 ${\alpha}$-glucosidase 저해제로, 산업적으로 포도당과 에탄올아민으로부터 세 단계의 화학 및 생물전환 과정을 거쳐 합성되며. acetic acid bacteria에 속하는 Gluconobactor oxydans (G. oxydans)는 불완전 산화를 통해 1-deoxy-1-(2-hydroxyethylamino)-D-glucitol (P1)을 Miglitol의 전구체인 6-(2-hydroxyetyl) amino-6-deoxy-${\alpha}$-L-sorbofuranose (P2)로 생물 전환시키는 균주이다. 본 연구에서는 토양으로부터 스크리닝하여 선발된 고효율 생물전환 박테리아인 CK-2165의 균주를 동정하고 최적의 발효조건을 탐색하고자 하였다. 16S rDNA 서열과 계통수 분석결과 CK-2165는 G. oxydans에 속하는 미생물임을 결정하였으며, API 20E kits를 사용하여 선발된 균주의 탄소원 이용성을 실험한 결과 glucose, mannose, inositol, sorbitol, rhamnose, sucrose, melibiose, amygdalin, arabinose와 같은 탄소원에 대한 이용성을 가진 균주임을 확인하였다. 또한 산업적 생산을 위하여 배양 조건을 최적화하였고 균체를 이용하여 생물전환 반응에 중요한 요소들을 조사하였다. 생물전환 반응을 위해 사용되는 균체는 균 성장 단계 중 후기 정지기 (late-stationary phase)에 수확한 균체가 가장 높은 활성을 나타내었고 생물전환 반응에는 $MgSO_4$가 필수적임을 확인하였다.

Keywords

References

  1. Prust, C., M. Hoffermeister, H. Liesegang, A. Wiezer, W. F. Fricke, A. Ehrenreich, G. Gottschalk and U. Dippenmeier "Complete genome sequence of the acetic bacterium Gluconobacter oxydans", Nat. Biotechnol. 23: pp.195-200, 2005. https://doi.org/10.1038/nbt1062
  2. Hiroshi H,, Tokuma F., Tomotake M., Dai K., Toshiharu Y., Kazunobu M., Keiji S. "Disruption of the Membrane-Bound Alcohol Dehydrogenase-Encoding Gene Improved Glycerol Use and Dihydroxyacetone Productivity in Gluconobacter oxydans". Boisci. Biotechnol. Biochem., 74(7), pp. 1391-1395, 2010 https://doi.org/10.1271/bbb.100068
  3. Keliang, G. and W. Dongzhi. "Asymmetric oxidation by Gluconobacter oxydans", Appl. Microbiol. Biotechnol. 70: pp. 135-139, 2006. https://doi.org/10.1007/s00253-005-0307-0
  4. Adachi, O., D. Moonmangmee, H. Toyama, M. Yamada, E. Shinagawa and K. Matsushita. "New developments in oxidative fermentation", Appl. Microbiol. Biotechnol. 60: pp. 643-653, 2003. https://doi.org/10.1007/s00253-002-1155-9
  5. Dippenmeier, U., M. Hoffermeister and C. Prust. "Biochemistry and biotechnological applications of Gluconobacter strains", Appl. Microbiol. Biotechnol. 3: pp. 233-242, 2002.
  6. Landis, B. H., J. K. McLaughlin, R.Hereen, R. W. Grabner and P. T. Wang. "Bioconversion of N-butylglucamine to 6-deoxy-6-butylamino sorbose by Gluconobacter oxydans", Org. Process Res. Dev. 6 : pp. 547-552, 2002. https://doi.org/10.1021/op0255128
  7. Keliang, G., Dongzhi W. "Asymmetric oxidation by Gluconobacter oxydans", Appl. Microbiol. Biotechnol. 70(2) : pp. 135-139, 2006. https://doi.org/10.1007/s00253-005-0307-0
  8. Jie Bing Zhang, Xiao Li Zhang, Duan Hao Wang, Bin Xia Zhao and Gang He "Biocatalytic regioselective oxidation of N-hydroxyethl glucamine for synthesis of miglitol", Advanced Materials Research, 197-198 : pp. 51-55, 2011. https://doi.org/10.4028/www.scientific.net/AMR.197-198.51
  9. Osao A., Yoshitaka A., Emiko S., Toshiharu Y. and Kazumobu M. "Coversion of Quinate to 3-Dehydroshikimate by Ca-Alginate-Immobilized Membrane of Gluconobacter oxydans IFO 3244 and Subsequent Asymmetric Reduction of 3-Dehydroshikimate to Shikimate by Immobilized Cytoplasmic NADP-Shikimate Dehydrogenase". Boisci. Biotechnol. Biochem., 74(12), pp. 2438-2444, 2010. https://doi.org/10.1271/bbb.100497
  10. Hirohide T., Wichai S., Duangtip M., Osao A. and Kazunobu M. "Molecular Properties of Membrane-Bound FDA-Containing D-Sorbitol Dehydrogenase from Thermotolerant Gluconobacter frateurii Isolated from Thailand. Boisci. Biotechnol. Biochem., 69(6), pp. 1120-1129, 2005. https://doi.org/10.1271/bbb.69.1120
  11. Arun Gupta, Vinary K. S., Qazi G. N. and Kumar a. "Gluconobacter oxydans : Its Biotechnological Applications". J. Mol. Microbiol. Biotechnol. 3(3) pp. 445-456. 2001.