DOI QR코드

DOI QR Code

식물정화기술의 개요와 환경오염 제어에의 응용 현황

An Overview of Phytoremediation Technology and Its Applications to Environmental Pollution Control

  • 이재흥 (한국기술교육대학교 기계공학부)
  • Lee, Jae Heung (School of Mechanical Engineering, Korea University of Technology and Education)
  • 투고 : 2012.10.02
  • 심사 : 2012.10.20
  • 발행 : 2012.10.31

초록

Phytoremediation-the use of plants for the in situ treatment of contaminated soil and water-has recently emerged as an inexpensive and user-friendly alternative to traditional methods of environmental clean-up. The present article outlines the characteristics of phytoremediation based on accumulated research evidence, along with discussions on its advantages and disadvantages. It further reviews various mechanisms involved in the phytoremediation processes: phytoextraction, rhizofiltration, phytostabilization, phytovolatilization and phytodegradation. Along the way, the author summarizes examples of its applications to environmental pollution control. These include wastewater treatment, removal of heavy metals, and hydrocarbons, remediation of recalcitrant contaminants, phytoremediation of radionuclides, and application of transgenic plants for enhanced biodegradation and phytoremediation. The remainder of the article briefly concludes with directions for future research.

키워드

참고문헌

  1. Pulford, I. D. and C. Watson (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environment Int. 29: 529-540. https://doi.org/10.1016/S0160-4120(02)00152-6
  2. Garbisu, C. and I. Alkorta (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 77: 229-236. https://doi.org/10.1016/S0960-8524(00)00108-5
  3. Salt, D. E., M. B. Blaylock, N. P. Kumar, V. Dushenkov, B. D. Ensley, I. Chet, and I. Raskin (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468-474. https://doi.org/10.1038/nbt0595-468
  4. Dobson, A. P., A. D. Bradshaw, and A. J. M. Baker (1997) Hopes for the future: restoration ecology and conservation biology. Science 277: 515-522. https://doi.org/10.1126/science.277.5325.515
  5. Cunningham, S. D., W. R. Berti, and J. W. Huang (1995) Phytoremediation of contaminated soils. Trends Biotechnol. 13: 393-397. https://doi.org/10.1016/S0167-7799(00)88987-8
  6. Meagher, R. B. (2000) Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153-162. https://doi.org/10.1016/S1369-5266(99)00054-0
  7. Scragg, A. (2006) Environmental Biotechnology. 2nd ed., pp. 204-216. Oxford University press, Oxford, UK.
  8. Karenlampi, S., H. Schat, J. Vangronsveld, J. A. C. Verkleij, D. van der Lelie, M. Mergeay, and A. I. Tervahauta (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut. 107: 225-231. https://doi.org/10.1016/S0269-7491(99)00141-4
  9. Eapen, S. and S. F. D'Souza (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol. Advan. 23: 97-114. https://doi.org/10.1016/j.biotechadv.2004.10.001
  10. Rugh, C. L., J. F. Senecoff, R. B. Meagher, and S. A. Merkle (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16: 925-928. https://doi.org/10.1038/nbt1098-925
  11. Aken, B. V. (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol. 26: 225-227. https://doi.org/10.1016/j.tibtech.2008.02.001
  12. Morikawa, H. and Ö. C. Erkin (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52: 1553-1558. https://doi.org/10.1016/S0045-6535(03)00495-8
  13. Boyajian, G. E. and L. H. Carreira (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat. Biotechnol. 15: 127-128. https://doi.org/10.1038/nbt0297-127
  14. Dowling, D. N. and S. L. Doty (2009) Improving phytoremediation through biotechnology. Curr. Opin. Biotechnol. 20: 204-206. https://doi.org/10.1016/j.copbio.2009.03.007
  15. Biddlestone, A. J., K. R. Gray, and G. D. Job (1991) Treatment of dairy farm wastewaters in engineered reed bed systems. Process Biochem. 26: 265-268. https://doi.org/10.1016/0032-9592(91)85012-D
  16. Vymazal, J. (2002) The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol. Eng. 18: 633-646. https://doi.org/10.1016/S0925-8574(02)00025-3
  17. Chaney, R. L., M. Malik, Y. M. Li, S. L. Brown, E. P. Brewer, J. S. Angle, and A. J. Baker (1997) Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8: 279-284. https://doi.org/10.1016/S0958-1669(97)80004-3
  18. Kramer, U. (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol. 16: 133-141. https://doi.org/10.1016/j.copbio.2005.02.006
  19. McGrath, S. P. and F. J. Zhao (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14: 277-282. https://doi.org/10.1016/S0958-1669(03)00060-0
  20. Kamal, M., A. E. Ghaly, N. Mahmoud, and R. Cote (2004) Phytoaccumulation of heavy metals by aquatic plants. Environmental Int. 29: 1029-1039. https://doi.org/10.1016/S0160-4120(03)00091-6
  21. Ye, W. L., M. A. Khan, S. P. McGrath, and F. J. Zhao (2011) Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ. Pollut. 159: 3739-3743. https://doi.org/10.1016/j.envpol.2011.07.024
  22. Lin, Q. and I. A. Mendelssohn (1998) The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol. Eng. 10: 263-274. https://doi.org/10.1016/S0925-8574(98)00015-9
  23. Teamkao, P. and P. Thiravetyan (2010) Phytoremediation of ethylene glycol and its derivatives by the burhead plant (Echinodorus cordifolius L.): effect of molecular size. Chemosphere 81: 1069-1074. https://doi.org/10.1016/j.chemosphere.2010.09.049
  24. Chekol, T., L. R. Vough, and R. L. Chaney (2004) Phytoremediation of polychlorinated biphenyl-contaminated soil: the rhizosphere effect. Environment Int. 30: 799-804. https://doi.org/10.1016/j.envint.2004.01.008
  25. Adler, T. (1996) Botanical cleanup crews: using plants to tackle polluted water and soil (phytoremediation). Sci. News 150: 42-43. https://doi.org/10.2307/3980349
  26. Eapen, S., S. Singh, V. Thorat, C. P. Kaushik, K. Raj, and S. F. D'Souza (2006) Phytoremediation of radiostrontium ($(^{90}Sr)$) and radiocesium ($(^{137}Cs)$) using giant milky weed (Calotropis gigantea R.Br.) plants. Chemosphere 65: 2071-2073. https://doi.org/10.1016/j.chemosphere.2006.06.049
  27. Shan, X., H. Wang, S. Zhang, H. Zhou, Y. Zheng, H. Yu, and B. Wen (2003) Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 165: 1343-1353. https://doi.org/10.1016/S0168-9452(03)00361-3
  28. Glick, B. R. (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Advan. 21: 383-393. https://doi.org/10.1016/S0734-9750(03)00055-7
  29. Sheng, X., L. Sun, Z. Huang, L. He, W. Zhang, and Z. Chen (2012) Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. J. Environ. Manage. 103: 58-64. https://doi.org/10.1016/j.jenvman.2012.02.030
  30. Axtell, N. R., S. P. K. Sternberg, and K. Claussen (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol. 89: 41-48. https://doi.org/10.1016/S0960-8524(03)00034-8
  31. Weis, J. and P. Weis (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment Int. 30: 686-700.
  32. Carrier, M., A. Loppinet-Serani, C. Absalon, F. Marias, C. Aymonie, and M. Mench (2011) Conversion of fern (Pteris vittata L.) biomass from a phytoremediation trial in sub- and supercritical water conditions. Biomass Bioenergy 35: 872-883. https://doi.org/10.1016/j.biombioe.2010.11.007
  33. Kyambadde, J., F. Kansiimme, L. Gumaelius, and G. Dalhammar (2004) A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Res. 38: 475-485. https://doi.org/10.1016/j.watres.2003.10.008
  34. Ansola, G., J. M. González, R. Cortijo, and E. de Luis (2003) Experimental and full-scale pilot constructed wetlands for municipal wastewaters treatment. Ecol. Eng. 21: 43-52. https://doi.org/10.1016/j.ecoleng.2003.08.002
  35. Bodini, S. F., A. R. Cicalini, and F. Santori (2011) Rhizosphere dynamica during phytoremediation of olive mill wasrewater. Bioresour. Technol. 102: 4383-4389. https://doi.org/10.1016/j.biortech.2010.12.091
  36. Arienzo, M., P. Adamo, and V. Cozzolino (2004) The potential of Lolium perenne for revegitation of contaminated soil from a metallurgical site. Sci. Total Environ. 319: 13-25. https://doi.org/10.1016/S0048-9697(03)00435-2
  37. Romkens, P., L. Bouwman, J. Japenga, and C. Draaisma (2002) Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ Pollut. 116: 109-121. https://doi.org/10.1016/S0269-7491(01)00150-6
  38. Natarajan, S., R. H. Stamps, L. Q. Ma, U. K. Saha, D. Hernandez, Y. Cai, and E. J. Zillioux (2011) Phytoremediation of arseniccontaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water. J. Hazard. Mater. 185: 983-989. https://doi.org/10.1016/j.jhazmat.2010.10.002
  39. Rugh, C. (2004) Genetically engineered phytoremediation: one man's trash is another man's transgene. Trends Biotechnol. 22: 496-498. https://doi.org/10.1016/j.tibtech.2004.08.003
  40. Palmroth, M. R. T., J. Pichtel, and J. A. Puhakka (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour. Technol. 84: 221-228. https://doi.org/10.1016/S0960-8524(02)00055-X
  41. Afzal, M., S. Yousaf, T. G. Reichenauer, M. Kuffner, and A. Sessitsch (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J. Hazard. Mater. 186: 1568-1575. https://doi.org/10.1016/j.jhazmat.2010.12.040
  42. Peng, R. H., R. R. Xu, X. Y. Fu, A. S. Xiong, W. Zhao, Y. S. Tian, B. Zhu, X. F. Jin, C. Chen, H. J. Han, and Q. H. Yao (2011) Microarray analysis of the phytoremediation and phytosensing of occupational toxicant naphthalene. J. Hazard. Mater. 189: 19-26. https://doi.org/10.1016/j.jhazmat.2010.12.114
  43. Sung, K., C. L. Munster, R. Rhykerd, M. C. Drew, and M. Y. Corapcioglu (2003) The use of vegetation to remediate soil freshly contaminated by recalcitrant contaminants. Water Res. 37: 2408-2418. https://doi.org/10.1016/S0043-1354(03)00029-0
  44. Rylott, E. L. and N. C. Bruce (2009) Plants disarm soil: engineering plants for phytoremediation of explosives. Trends Biotechnol. 29: 73-81.
  45. Olette, R., M. Couderchet, S. Biagianti, and P. Eullaffroy (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70: 1414-1421. https://doi.org/10.1016/j.chemosphere.2007.09.016
  46. Mitton, F. M., M. Gonzalez, A. Peña, and K. S. B. Miglioranza (2012) Effects of amendments on soil availability and phytoremediation potential of aged p,p'-DDT, p,p'-DDE and p,p'-DDD residues by willow plants (Salix sp.). J. Hazard. Mater. 203-204: 62-68. https://doi.org/10.1016/j.jhazmat.2011.11.080
  47. Shen, C., X. Tang, S. A. Cheema, C. Zhang, M. I. Khan, F. Liang, X. Chen, Y. Zhu, Q. Lin, and Y. Chen (2009) Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-$\beta$-cyclodextrins. J. Hazard. Mater. 172: 1671-1676. https://doi.org/10.1016/j.jhazmat.2009.08.064
  48. Didier, P., L. G. Philippe, H. Sonia, B. Amar, M. C. Claudia, D. M. and Falla Jairo (2012) Prospects of Miscanthus x giganteus for PAH phytoremediation: a microcosm study. Ind. Crop. Prod. 36: 276-281. https://doi.org/10.1016/j.indcrop.2011.10.030
  49. Wang, M. C., Y. T. Chen, S. H. Chen, S. W. Chang Chien, and S. V. Sunkara (2012) Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere 87: 217-225. https://doi.org/10.1016/j.chemosphere.2011.12.063
  50. Abhilash, P. C., S. Jamil, and N. Singh (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Advan. 27: 474-488. https://doi.org/10.1016/j.biotechadv.2009.04.002
  51. Willey, N. (2010) Soils contaminated with radionuclides. pp. 305-317. In: N. Willey (ed.). Phytoremediation Methods and Reviews, Humana Press, Totowa, NJ. USA.
  52. Cerne, M., B. Smodis, and M. Strok (2011) Uptake of radionuclides by a common reed (Phragmites australia (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Zirovski Vrh. Nucl. Eng. Des. 241: 1282-1286. https://doi.org/10.1016/j.nucengdes.2010.04.003
  53. Saleh H. M. (2012) Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nucl. Eng. Des. 242: 425-432. https://doi.org/10.1016/j.nucengdes.2011.10.023
  54. Misra, S. and L. Gedamu (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor. Appl. Genet. 78: 161-168. https://doi.org/10.1007/BF00288793
  55. Rugh, C. L., H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, and R. B. Meagher (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial mer A gene. Proc. Natl. Acad. Sci. 93: 3182-3187. https://doi.org/10.1073/pnas.93.8.3182
  56. Bizily, S. P., C. L. Rugh, and R. B. Meagher (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotechnol. 18: 213-217. https://doi.org/10.1038/72678
  57. French, C. E., S. J. Rosser, G. J. Davies, S. Nicklin, and N. C. Bruce (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat. Biotechnol. 17: 491-494. https://doi.org/10.1038/8673
  58. Gisbert, C., R. Ros, A. D. Haro, D. J. Walker, M. P. Bernal, R. Serrano, and J. Navarro-Avino (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 303: 440-445. https://doi.org/10.1016/S0006-291X(03)00349-8
  59. Aken, B. V. (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr. Opin. Biotechnol. 20: 231-236. https://doi.org/10.1016/j.copbio.2009.01.011
  60. Witters, N., R. Mendelsohn, S. V. Slycken, N. Weyens, E. Schreurs, E. Meers, F. Tack, R. Carleer, and J. Vangronsved (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenergy 39: 470-477. https://doi.org/10.1016/j.biombioe.2011.11.017
  61. Witters, N., R. Mendelsohn, S. V. Passel, S. V. Slycken, N. Weyens, E. Schreurs, E. Meers, F. Tack, B. Vanheusden, and J. Vangronsved (2012) Phytoremediation, a sustainable remediation technology? II: economic assessment of $CO_{2}$ abatement through the use of phytoremediation crops for renewable energy production. Biomass Bioenergy 39: 470-477. https://doi.org/10.1016/j.biombioe.2011.11.017
  62. Vallero, D. A. (2010) Environmental Biotechnology: A Biosystems approach, pp. 360-362. Elsevier, London, UK.