References
- Baines, D., Downer, R.G., 1994. Octopamine enhances phagocytosis in cockroach hemocytes: involvement of inositol triphosphate. Arch. Insect Biochem. Physiol. 26, 249-261. https://doi.org/10.1002/arch.940260402
- Beckage, N.E., 2008. Insect immunology. Academic Press, New York.
- Beetz, S., Holthusen, T.K., Koolman, J., Trenczek, T., 2008. Correlation of hemocyte counts with different developmental parameters during the last larval instar of the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 67, 63-75. https://doi.org/10.1002/arch.20221
-
Burke, J.E., Dennis, E.A., 2009. Phospholipase
$A_{2}$ structure /function, mechanism and signaling. J. Lipid Res. 50, S237-S242. - Buyukguzel, E., Tunaz, H., Stanley D., Buyukguzel, K., 2007. Eicosanoids mediate Galleria mellonella cellular immune response to viral infection. J. Insect Physiol. 53, 99-105. https://doi.org/10.1016/j.jinsphys.2006.10.012
- Clark, K.D., Pech, L.L., Strand, M.R., 1997. Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272, 23440-23447. https://doi.org/10.1074/jbc.272.37.23440
- Gardiner, E.M.M., Strand, M.R., 2000. Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 43, 147-164. https://doi.org/10.1002/(SICI)1520-6327(200004)43:4<147::AID-ARCH1>3.0.CO;2-J
- Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611-643. https://doi.org/10.1146/annurev.ento.42.1.611
- Goh, H.G., Lee, S.G., Lee, B.P., Choi, G.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29, 180-183.
- Huang, F., Yang, Y.Y., Shi, M., Li, J.Y., Chen, Z.Q., Chen, F.S., Chen, X.X., 2010. Ultrastructural and functional characterization of circulating hemocytes from Plutella xylostella larva: cell types and their role in phagocytosis. Tissue Cell 42, 360-364. https://doi.org/10.1016/j.tice.2010.07.012
- Jurenka, R.A., Pedibhotla, V.K., Stanley, D.W., 1999. Prostaglandin production in response to bacterial infection in true armyworm larvae. Arch. Insect Biochem. Physiol. 41, 225-232. https://doi.org/10.1002/(SICI)1520-6327(1999)41:4<225::AID-ARCH6>3.0.CO;2-0
- Kim, G., Kim, Y., 2010. Up-regulation of circulating hemocyte population in response to bacterial challenge is mediated by octopamine and 5-hydroxytryptamine via Rac1 signal in Spodoptera exigua. J. Insect Physiol. 56, 559-566. https://doi.org/10.1016/j.jinsphys.2009.11.022
- Kim, K., Madanagopal, N., Lee, D., Kim, Y., 2009. Octopamine and 5-hydroxytryptamine mediate hemocytic phagocytosis and nodule formation via eicosanoids in the beet armyworm, Spodoptera exigua. Arch. Insect Biochem. Physiol. 70, 162-176. https://doi.org/10.1002/arch.20286
- Kim, J., Nalini, M., Kim, Y., 2008. Immunosuppressive activity of cultured broth of entomopathogenic bacteria on the beet armyworm, Spodoptera exigua, and their mixture effects with BT biopesticide on insecticidal pathogenicity. Kor. J. Pestic. Sci. 12, 184-191.
- Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in cellular immune responses. Insect Biochem. Mol. Biol. 32, 1237-1242.
- Lord, J.C., Anderson, S., Stanley, D.W., 2002. Eicosanoids mediate Manduca sexta cellular response to the fungal pathogen Beauveria bassiana: a role for the lipoxygenase pathway. Arch. Insect Biochem. Physiol. 51, 46-54. https://doi.org/10.1002/arch.10049
- Markus, R., Laurinyecz, B., Kurucz, E., Honti, V., Bajusz, I., Sipos, B., Somogyi, K., Kronhamn, K., Hultmark, J., Ando, D.I., 2009. Sessile hemocytes and hematopoietic compartment in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 106, 4805-4809. https://doi.org/10.1073/pnas.0801766106
- Merchant, D., Ertl, R., Rennard, S.I., Stanley, D.W., Miller, J.S., 2008. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol. 54, 215-221. https://doi.org/10.1016/j.jinsphys.2007.09.004
- Miller, J.S., Nguyen, T., Stanley-Samuelson, D.W., 1994. Eicosanoids mediate insect nodulation responses to bacterial infections. Proc. Natl. Acad. Sci. USA 91, 12418-12422. https://doi.org/10.1073/pnas.91.26.12418
- Morishima, I., Yamano, Y., Inoue, K., Matsu, N., 1997. Eicosanoid mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett. 419, 83-86. https://doi.org/10.1016/S0014-5793(97)01418-X
- Park, J., Kim, Y., 2012. Eicosanoid biosynthesis is activated via Toll, but not Imd signal pathway. J. Invertebr. Pathol. 110, 382-388. https://doi.org/10.1016/j.jip.2012.04.015
- Riddiford, L.M., 1991. Hormonal control of sequential gene expression in insect epidermis, in: Binnington, K., Retnakaran, A. (Eds.), Physiology of the insect epidermis. CSIRO, Melbourne, Australia, pp. 46-54.
- SAS Institute, Inc., 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
-
Shrestha, S., Kim, Y., 2007. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase
$A_{2}$ . J. Invertebr. Pathol. 96, 64-70. https://doi.org/10.1016/j.jip.2007.02.009 - Shrestha, S., Kim, Y., 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm, Spodoptera exigua. Insect Biochem. Mol. Biol. 38, 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
- Shrestha, S., Stanley, D., Kim, Y., 2011. PGE2 induces oenocytoid cell lysis via a G protein-coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57, 1568-1576. https://doi.org/10.1016/j.jinsphys.2011.08.010
- Stanley, D.W., 2005. Eicosanoids. in: Gilbert, L.L., Iatrou, K., Gill, S.S. (Eds.), Comprehensive insect molecular science. Vol. 4. Elsevier, Amsterdam, The Netherlands, pp. 307-339.
- Stanley, D.W., 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51, 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
- Stanley, D.W., 2011. Eicosanoids: progress towards manipulating insect immunity. J. Appl. Entomol. 135, 534-545. https://doi.org/10.1111/j.1439-0418.2010.01612.x
- Stanley, D., Kim, Y., 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2, 1-11.
- Tunaz, H., Park, Y., Buyukguzel, K., Bedick, J.C., Nor Aliza, A.R., Stanley, D.W., 2003. Eicosanoids in insect immunity: bacterial infection stimulates hemocytic phospholipase A2 activity in tobacco hornworms. Arch. Insect Biochem. Physiol. 52, 1-6. https://doi.org/10.1002/arch.10056
- Wolfgang, W.J., Riddiford, L.M., 1986. Larval cuticular morphogenesis in the tobacco hornworm, Manduca sexta, and its hormonal regulation. Dev. Biol. 113, 305-316. https://doi.org/10.1016/0012-1606(86)90166-1
-
Yajima, M., Takada, M., Takahashi, N., Kikuchi, H., Natori, S., Oshima, Y., Kurata, S., 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase
$A_{2}$ -generated activation of the immune deficiency (imd) pathway in insect immunity. Biochem. J. 371, 205-210. https://doi.org/10.1042/BJ20021603 - Yu, X.Q., Zhu, Y.F., Ma, C., Fabrick, J.A., Kanost, M.R., 2002. Pattern recognition proteins in Manduca sexta plasma. Insect Biochem. Mol. Biol. 32, 1287-1293. https://doi.org/10.1016/S0965-1748(02)00091-7
Cited by
- Cellular Immune Response of the Legume Pod Borer, Maruca vitrata, and its Suppression by BtPlus to Enhance Bacillus thuringiensis Pathogenicity vol.21, pp.2, 2017, https://doi.org/10.7585/kjps.2017.21.2.150
- An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis vol.145, 2017, https://doi.org/10.1016/j.jip.2017.03.004
- Specific inhibition of Xenorhabdus hominickii , an entomopathogenic bacterium, against different types of host insect phospholipase A 2 vol.149, 2017, https://doi.org/10.1016/j.jip.2017.08.009
- A novel calcium-independent phospholipase A 2 and its physiological roles in development and immunity of a lepidopteran insect, Spodoptera exigua vol.77, 2017, https://doi.org/10.1016/j.dci.2017.08.014
- PROSTAGLANDIN MEDIATES DOWN-REGULATION OF PHENOLOXIDASE ACTIVATION OFSpodoptera exiguaVIA PLASMATOCYTE-SPREADING PEPTIDE-BINDING PROTEIN vol.85, pp.4, 2014, https://doi.org/10.1002/arch.21156
- Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling vol.13, pp.2, 2018, https://doi.org/10.1371/journal.pone.0193282