References
- Aerts, M., Claeskens, G. and Hart, J. D. (2004). Bayesian-motivated tests of function fit and their asymptotic frequentist properties, The Annals of Statistics, 32, 2580-2615. https://doi.org/10.1214/009053604000000805
- Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, 7, 434-455.
- Choi, T., Lee, J. and Roy, A. (2009). A note on the Bayes factor in a semiparametric regression model, Journal of Multivariate Analysis, 100, 1316-1327. https://doi.org/10.1016/j.jmva.2008.12.006
- Choi, T., Shi, J. Q. andWang, B. (2011). A Gaussian process regression approach to a single-index model, Journal of Nonparametric Statistics, 23, 21-36. https://doi.org/10.1080/10485251003768019
- Choi, T. and Woo, Y. (2012). A partially linear model using a Gaussian process prior, submitted.
- Damien, P.,Wakefield, J. andWalker, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 331-344. https://doi.org/10.1111/1467-9868.00179
- Engle, R. F., Granger, C. W. J., Rice, J. and Weiss, A. (1986). Semiparametric estimates of the relation between weather and electricity sales, Journal of the American Statistical Association, 81, 310-320. https://doi.org/10.1080/01621459.1986.10478274
- H¨ardle, W., Liang, H. and Gao, J. (2000). Partially linear Models, Physica-Verlag, Heidelberg.
- Hayfield, T. and Racine, J. S. (2008). Nonparametric econometrics: The np package, Journal of Statistical Software, 27, 1-32.
- Kennedy, M. C. and O'Hagan, A. (2001). Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 425-464. https://doi.org/10.1111/1467-9868.00294
- Kneib, T., Konrath, S. and Fahrmeir, L. (2011). High dimensional structured additive regression models: Bayesian regularization, smoothing and predictive performance, Journal of the Royal Statistical Society: Series C (Applied Statistics), 60, 51-70. https://doi.org/10.1111/j.1467-9876.2010.00723.x
- Koop, G. and Poirier, D. J. (2004). Bayesian variants of some classical semiparametric regression techniques, Journal of Econometrics, 123, 259-282. https://doi.org/10.1016/j.jeconom.2003.12.008
- Lenk, P. J. (1999). Bayesian inference for semiparametric regression using a Fourier representation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 863-879. https://doi.org/10.1111/1467-9868.00207
- Li, Q. and Racine, J. S. (2007). Nonparametric Econometrics, Theory and Practice, Princeton University Press, Princeton, New Jersey.
- Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 34, 1-41.
- Na, J. and Kim, J. (2002). Bayesian model selection and diagnostics for nonlinear regression model, Korean Journal of Applied Statistics, 15, 139-151. https://doi.org/10.5351/KJAS.2002.15.1.139
- Oakley, J. E. and O'Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: A Bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66, 751-769. https://doi.org/10.1111/j.1467-9868.2004.05304.x
- O'Hagan, A. (1978). Curve fitting and optimal design for prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 40, 1-42.
- Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA.
- Ruppert, D., Wand, M. P. and Caroll, R. J. (2009). Semiparametric regression during 2003-2007, Electronic Journal of Statistics, 3, 1193-1256. https://doi.org/10.1214/09-EJS525
- Shi, J. Q. and Choi, T. (2011). Gaussian Process Regression Analysis for Functional Data, Chapman & Hall/CRC Press, New York.
- Shi, J. Q., Murray-Smith, R. and Titterington, D. M. (2007). Gaussian process function regression modeling for batch data, Biometrics, 63, 714-723. https://doi.org/10.1111/j.1541-0420.2007.00758.x
- Shi, J. Q. and Wang, B. (2008). Curve prediction and clustering with mixtures of Gaussian process functional and regression models, Statistics and Computing, 18, 267-283. https://doi.org/10.1007/s11222-008-9055-1
- Wooldridge, J. M. (2003). Introductory Econometrics, A Modern Approach, MIT Press, Cambridge, MA.
- Yatchew, A. (1998). Nonparametric regression technique in Economics, Journal of Economic Literature, 36, 669-721.
- Yi, G., Shi, J. Q. and Choi, T. (2011). Penalized Gaussian process regression and classification for highdimensional nonlinear data, Biometrics, 67, 1285-1294. https://doi.org/10.1111/j.1541-0420.2011.01576.x
- Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index models, Journal of the American Statistical Association, 97, 1042-1054. https://doi.org/10.1198/016214502388618861