DOI QR코드

DOI QR Code

A Stratified Unknown Repeated Trials in Randomized Response Sampling

  • Received : 2012.05.14
  • Accepted : 2012.08.06
  • Published : 2012.11.30

Abstract

This paper proposes an alternative stratified randomized response model based on the model of Singh and Joarder (1997). It is shown numerically that the proposed stratified randomized response model is more efficient than Hong et al. (1994) (under proportional allocation) and Kim and Warde (2004) (under optimum allocation).

Keywords

References

  1. Cochran, W. G. (1977). Sampling Technique, 3rd Edition, John Wiley & Sons, New York.
  2. Hong, K., Yum, J. and Lee, H. (1994). A stratified randomized response technique, Korean Journal of Applied Statistics, 7, 141-147.
  3. Kim, J.-M. and Warde, W. D. (2004). A Stratified Warner's randomized response model, Journal of Statistical Planning and Inference, 120, 155-165. https://doi.org/10.1016/S0378-3758(02)00500-1
  4. Mahajan, P. K., Gupta, J. P. and Singh, R. (1994). Determination of optimum strata boundaries for scrambled responses, Statistica, 3, 375-381
  5. Mangat, N. S. (1994). An improved randomized response strategy, Journal of the Royal Statistical Society, B56, 93-95.
  6. Mangat, N. S. and Singh, R. (1990). An alternative randomized procedure, Biometrika, 77, 439-442. https://doi.org/10.1093/biomet/77.2.439
  7. Singh, R. and Mangat, N. S. (1996). Elements of Survey Sampling, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  8. Singh, S. and Joarder, H. A. (1997). Unknown repeated trials in randomized response sampling, Journal of Indian social Agricultural Statistics, 50, 103-105.
  9. Singh, S., Singh, R., Mangat, N. S. and Tracy, D. S. (1994). An alternative device for randomized responses, Statistica, 54, 233-243.
  10. Warner, S. L. (1965). Randomized response, A survey technique for eliminating evasive answer bias, Journal of American Statistical Association, 60, 63-69. https://doi.org/10.1080/01621459.1965.10480775

Cited by

  1. A modified optimal orthogonal new additive model vol.45, pp.22, 2016, https://doi.org/10.1080/03610926.2014.963622
  2. A stratified Tracy and Osahan's two-stage randomized response model vol.45, pp.11, 2016, https://doi.org/10.1080/03610926.2014.895839
  3. A stratified unrelated question randomized response model using Neyman allocation vol.46, pp.1, 2017, https://doi.org/10.1080/03610926.2014.983612
  4. An adept-stratified Kuk's randomized response model using Neyman allocation vol.46, pp.6, 2017, https://doi.org/10.1080/03610926.2015.1053933
  5. Role of weights in improving the efficiency of Kim and Warde's mixed randomized response model vol.45, pp.4, 2016, https://doi.org/10.1080/03610926.2013.853795
  6. An efficient stratified randomized response model vol.11, pp.4, 2017, https://doi.org/10.1080/15598608.2017.1350607
  7. A two-stage Land et al.'s randomized response model for estimating a rare sensitive attribute using Poisson distribution vol.46, pp.1, 2017, https://doi.org/10.1080/03610926.2014.995821
  8. An efficient use of moment's ratios of scrambling variables in a randomized response technique vol.46, pp.2, 2017, https://doi.org/10.1080/03610926.2014.997363
  9. A two-stage unrelated randomized response model for estimating a rare sensitive attribute in probability proportional to size sampling using Poisson distribution 2018, https://doi.org/10.1080/03610926.2017.1361992
  10. An optional randomized response model for estimating a rare sensitive attribute using Poisson distribution vol.46, pp.6, 2017, https://doi.org/10.1080/03610926.2015.1040506
  11. A stratified randomized response model for sensitive characteristics using the negative hypergeometric distribution vol.46, pp.6, 2017, https://doi.org/10.1080/03610926.2015.1010007
  12. An Improvement Over Kim and Elam Stratified Unrelated Question Randomized Response Mode Using Neyman Allocation vol.77, pp.1, 2015, https://doi.org/10.1007/s13571-014-0088-5
  13. A dexterous randomized response model for estimating a rare sensitive attribute using Poisson distribution vol.90, 2014, https://doi.org/10.1016/j.spl.2014.03.019
  14. Estimation of population proportion of a qualitative character using randomized response technique in stratified random sampling pp.1532-415X, 2018, https://doi.org/10.1080/03610926.2017.1417436
  15. A New Approach to Randomized Response Model Using Fuzzy Numbers vol.11, pp.1, 2018, https://doi.org/10.3923/ajms.2018.1.11
  16. Revisit of a randomized response model for estimating a rare sensitive attribute under probability proportional to size sampling using Poisson probability distribution pp.1532-415X, 2018, https://doi.org/10.1080/03610926.2018.1508718
  17. Estimation of a rare sensitive attribute for two-stage randomized response model in probability proportional to size sampling using Poisson probability distribution vol.53, pp.2, 2019, https://doi.org/10.1080/02331888.2019.1566906