DOI QR코드

DOI QR Code

ON ITERATIVE APPROXIMATION OF COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS WITH APPLICATIONS

  • Kim, Jong Kyu (Department of Mathematics Education, Kyungnam University) ;
  • Qin, Xiaolong (School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power) ;
  • Lim, Won Hee (Department of Mathematics, Kyungnam University)
  • 투고 : 2012.10.09
  • 심사 : 2012.11.20
  • 발행 : 2012.11.30

초록

In this paper, the problem of iterative approximation of common fixed points of asymptotically nonexpansive is investigated in the framework of Banach spaces. Weak convergence theorems are established. A necessary and sufficient condition for strong convergence is also discussed. As an application of main results, a variational inequality is investigated.

키워드

참고문헌

  1. H.H. Bauschke, J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38 (1996), 367-426. https://doi.org/10.1137/S0036144593251710
  2. T. Kotzer, N. Cohen, J. Shamir, Image restoration by a novel method of parallel projection onto constraint sets, Optim. Lett. 20 (1995), 1772-1774.
  3. C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl. 20 (2008), 103-120.
  4. Y. Censor, T. Elfving, N. Kopf, Bortfeld, T. The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl. 21 (2005), 2071-2084. https://doi.org/10.1088/0266-5611/21/6/017
  5. Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol. 51 (2006), 2353-2365. https://doi.org/10.1088/0031-9155/51/10/001
  6. G. Lopez, V. Martin, H.K. Xu, Perturbation techniques for nonexpansive mappings with applications, Nonlinear Anal. 10 (2009), 2369-{2383. https://doi.org/10.1016/j.nonrwa.2008.04.020
  7. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
  8. J. Schu, Weak and Strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Sco.43 (1991), 153-159. https://doi.org/10.1017/S0004972700028884
  9. S.H. Khan, I. Yildirim, M. Ozdemir, Convergence of an implicit algorithm for two families of nonexpansive mappings, Comput. Math. Appl. 59 (2010), 3084-3091. https://doi.org/10.1016/j.camwa.2010.02.029
  10. G.L. Acedo, H.K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007), 2258-2271. https://doi.org/10.1016/j.na.2006.08.036
  11. X. Qin, S.M. Kang, R.P. Agarwal, On the convergence of an implicit iterative process for generalized asymptotically quasi-nonexpansive mappings, Fixed Point Thory Appl. 2010 (2010), 714860. https://doi.org/10.1155/2010/714860
  12. X. Qin, J.K. Kim, T.Z. Wang, On the convergence of implicit iterative processes for asymptotically pseudocontractive mappings in the intermediate sense, Appl. Abst. Anal. 2011 (20110), 468716.
  13. X. Qin, S.Y. Cho, Implicit iterative algorithms for treating strongly continuous semi-groups of Lipschitz pseudocontractions, Appl. Math. Lett. 23 (2010), 1252-1255. https://doi.org/10.1016/j.aml.2010.06.008
  14. J.K. Kim, Y.M. Nam, J.Y. Sim, Convergence theorems of implicit iterative sequences for a finite family of asymptotically quasi-nonexpansive type mappings, Nonlinear Anal. 71 (2009), e2839-e2848. https://doi.org/10.1016/j.na.2009.06.090
  15. Y. Hao, S.Y. Cho, X. Qin, Some weak convergence theorems for a family of asymptotically nonexpansive nonself Mappings, Fixed Point Theory Appl. 2010 (2010), Article ID 218573.
  16. S.S. Chang, K.K. Tan, H.W.J. Lee, C.K. Chan, On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313 (2006), 273-283. https://doi.org/10.1016/j.jmaa.2005.05.075
  17. H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K
  18. Z. Opial, Weak convergence of the sequence of successive appproximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  19. K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
  20. S.S. Chang, Y.J. Cho, H.Y. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc. 38 (2001), 1245-1260.
  21. K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
  22. R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341-355. https://doi.org/10.2140/pjm.1973.47.341
  23. S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973), 57-70. https://doi.org/10.1016/0022-247X(73)90024-3
  24. K. Aoyama, H. Iiduma, W. Takahashi, Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory Appl. 2006 (2006), 35390.