DOI QR코드

DOI QR Code

NOTE ON UPPER BOUND SIGNED 2-INDEPENDENCE IN DIGRAPHS

  • Kim, Hye Kyung (Department of Mathematics Education, Catholic University of Daegu)
  • 투고 : 2012.08.17
  • 심사 : 2012.09.26
  • 발행 : 2012.11.30

초록

Let D be a finite digraph with the vertex set V(D) and arc set A(D). A two-valued function $f:V(D){\rightarrow}\{-1,\;1\}$ defined on the vertices of a digraph D is called a signed 2-independence function if $f(N^-[v]){\leq}1$ for every $v$ in D. The weight of a signed 2-independence function is $f(V(D))=\sum\limits_{v{\in}V(D)}\;f(v)$. The maximum weight of a signed 2-independence function of D is the signed 2-independence number ${\alpha}_s{^2}(D)$ of D. Recently, Volkmann [3] began to investigate this parameter in digraphs and presented some upper bounds on ${\alpha}_{s}^{2}(D)$ for general digraph D. In this paper, we improve upper bounds on ${\alpha}_s{^2}(D)$ given by Volkmann [3].

키워드

참고문헌

  1. G. Chartrand and L. Lesniak, Graphs and digraphs, 4th ed. Chapman and Hall, Boca Raton, 2005.
  2. M. A. Henning, Signed 2-independence in graphs, Discrete Math. 250 (2002), 93-107. https://doi.org/10.1016/S0012-365X(01)00275-8
  3. L. Volkmann, Signed 2-independence in digraphs, Discrete. Math. 312 (2012), 465-471. https://doi.org/10.1016/j.disc.2011.09.009
  4. B. Zelinka, On signed 2-independence numbers of graphs, Manuscript.