DOI QR코드

DOI QR Code

Development of Shopping Path Analysis System(SPAS)

고객 쇼핑 동선 분석시스템의 개발

  • Jung, In-Chul (Department of Industrial & Systems Engineering, Dongguk University-Seoul) ;
  • Kwon, Young S. (Department of Industrial & Systems Engineering, Dongguk University-Seoul) ;
  • Lee, Yong-Han (Department of Industrial & Systems Engineering, Dongguk University-Seoul)
  • 정인철 (동국대학교 산업시스템공학부) ;
  • 권영식 (동국대학교 산업시스템공학부) ;
  • 이용한 (동국대학교 산업시스템공학부)
  • Received : 2012.08.16
  • Accepted : 2012.10.05
  • Published : 2012.11.30

Abstract

Technological advancements in information technology including RFID and mobile technologies have made it feasible to track the customers travel path in a store. The customer travel paths provide valuable implications to understanding the customer behaviors in a store. In our research, we develop a shopping path analysis system to track and analyze the customer travel path. The proposed system consists of RFID systems for collecting the customer paths and analysis system. The analysis system conducts clustering for identifying the distinctive shopping patterns, and analyzes the profile of a grocery, such as congestion rate, visiting rate, and staying time, etc. We show the applicability of our proposed system using the actual data obtained at a grocery in Seoul as a case study.

최근의 RFID와 모바일 기술을 포함한 정보 기술의 진보로 인해 매장 내에서 고객 쇼핑 동선을 추적하는 것이 가능해지고 있다. 특히, 고객 쇼핑 동선은 매장 내에서 발생하는 고객 쇼핑 행동을 이해하는데 중요한 단서를 제공한다. 따라서 본 연구에서는 고객 동선 분석을 위하여 동선 정보를 획득하고 분석하는 고객 쇼핑 동선 분석 시스템을 개발한다. 시스템 개발을 위해 RFID를 사용하였고, 대형 유통 매장의 현업 전문가와 함께 다양한 매장 측정 변수를 정의하여 혼잡도, 방문비율등과 같은 매장 프로파일 분석과 고객 쇼핑 패턴 식별을 위해 동선 클러스터링 분석 기법을 개발하여 적용하였다. 최종적으로는 개발한 시스템의 실효성을 평가해보기 위하여 실제 서울의 대형 유통 매장에 적용하여 사례분석까지 실시해보았다.

Keywords

References

  1. An, J. M., A study on real-time preference goods recommendation using RFID-based shopping moving line analysis, Ph. D. Dissertation, Soongsil University, 2005.
  2. Jung, I.-C. and Kwon, Y. S., "A New Approach to Spatial Pattern Clustering based on Longest Common Subsequence with application to a Grocery," IE Interface, Vol. 24, No. 4, pp. 447-456, 2011. https://doi.org/10.7232/IEIF.2011.24.4.447
  3. Jung, L-C., A Study on Moving Object Trajectory Clustering(Case Study : Analysis of Shopper Movement in Grocery Supermarket), Ph. D. Dissertation, Dongguk University, 2012.
  4. Kourouthanassis, P. and Roussos, G., "Developing consumer-friendly pervasive retail systems," Pervasive Computing IEEE, Vol. 2, No. 2, pp. 32-39, 2003. https://doi.org/10.1109/MPRV.2003.1203751
  5. Hirschberg, D. S., "Algorithms for the longest common subsequence problem," Journal of ACM, Vol. 25, No. 4, pp. 664-675, 1977.
  6. Hui, S. K., Bradlow, E. T., and Fader, P. S.., "Testing Behavioral Hypotheses Using an Integrated Model of Grocery Store Shopping path and purchase Behavior," Journal of consumer research, Vol. 35, No. 3, pp. 478-493, 2009.
  7. Hui, S. K., Fader, P. S., and Bradlow, E. T., "Path Data in Marketing : An Integrative Framework and Prospectus for Model Building," Marketing Science, Vol. 28, No. 2, pp. 320-335, 2009. https://doi.org/10.1287/mksc.1080.0400
  8. Larson, J. S., Bradlow, E. T., and Fader, P. S., "An exploratory look at supermarket shopping paths," International Journal of Research in Marketing, Vol. 22, No. 4, pp. 395-414, 2005. https://doi.org/10.1016/j.ijresmar.2005.09.005
  9. Liao, I.-E. and Lin, W.-C., "Shopping Path Analysis and Transaction Mining Based of RFID Technology," RFID Eurasia, 1st Annual, pp. 1-5, 2007.
  10. Newman, A. J., Yu, D. K. C., and Oulton, D.P., "New insights into retail space and format planning from customer-tracking data," Journal of Retailing and Consumer Services, Vol. 9, No. 5, pp. 253-258, 2002. https://doi.org/10.1016/S0969-6989(02)00010-3
  11. Uotila, V. and Skogster, P., "Space management in a DIY store analyzing consumer shopping paths with data-tracking devices," Facilities, Vol. 25, No. 9, pp. 363-374, 2007. https://doi.org/10.1108/02632770710772469
  12. Yada, K., "String analysis technique for shopping path in a supermarket," International Journal of Intelligent Systems, Vol. 36, No. 3, pp. 385-402, 2011.
  13. Yang, S. J., Shoppers' shopping path pattern analysis using RFID data, M. E. Dissertion, Dongguk University, 2011.