DOI QR코드

DOI QR Code

Incidence Angle Estimation by the Tonpilz Type Underwater Acoustic Vector Sensor with a Quadrupole Structure

Quadrupole 구조를 가진 Tonpilz형 수중 음향 벡터 센서를 이용한 입사각 추정

  • 임영섭 (경북대학교 센서 및 디스플레이공학과) ;
  • 노용래 (경북대학교 기계공학과)
  • Received : 2012.08.06
  • Accepted : 2012.10.16
  • Published : 2012.11.30

Abstract

Typical Tonpilz type underwater acoustic transducers making use of piezoelectric ceramics detect the magnitude of an acoustic pressure, a scalar quantity, and convert this pressure into a proportional output voltage. The scalar sensor has no directional sensitivity. In this paper, we have proposed a new vector sensor based on the Tonpilz transducer structure, which is sensitive to both the magnitude and the azimuthal direction of an acoustic wave. Validity of this new design has been confirmed with analytic equations and finite element analyses.

압전 세라믹을 이용한 전형적인 Tonpilz형 수중 음향센서는 외부에서 들어오는 음향 신호를 이에 상응하는 전압으로 변환해 스칼라 양인 음압의 크기만 측정할 뿐 외부에서 들어오는 신호의 방향은 파악할 수 없는 한계가 있다. 이와 같은 문제점을 해결하고자 본 논문에서는 Tonpilz형 트랜스듀서를 이용해 단일 센서만으로도 음압의 크기와 방위각 방향을 동시에 분석해 낼 수 있는 새로운 벡터 센서 구조를 제안하고, 제안된 구조의 타당성을 수식 및 유한요소해석을 통해 검증하였다.

Keywords

References

  1. O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Peninsula Publishing, Los Altos, CA, 1988.
  2. H. C. Schau and A. Z. Robinson, "Passive source localization employing intersecting spherical surfaces from time-of-arrival differences," IEEE Trans. Acoust. Speech Sig. Processing, vol. 35, no. 8, pp. 1223-1225, 1987.
  3. M. J. D. Rendas and J. M. F. Moura, "Cramer-rao bound for location systems in multipath environments," IEEE Trans. Sig. Processing, vol. 39, no. 12, pp. 2593 -2610, 1991. https://doi.org/10.1109/78.107410
  4. A. B. Baggeroer, W. A. Kuperman, and H. Schmidt, "Matched field processing: source localization in correlated noise as an optimum parameter estimation problem," J. Acoust. Soc. Am., vol. 83, no. 2, pp. 571- 587, 1988. https://doi.org/10.1121/1.396151
  5. N. Zou and A. Nehorai, "Circular acoustic vector-sensor array for mode beamforming," IEEE Trans. Sig. Processing, vol. 57, no. 8, pp. 3041-3052, 2009. https://doi.org/10.1109/TSP.2009.2019174
  6. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound, Springer, New York, 2007.
  7. C. B. Leslie, J. M. Kendall, and J. L. Jones, "Hydrophone for measuring particle velocity", J. Acoust. Soc. Am., vol. 28, no. 4, pp. 711-715, 1956. https://doi.org/10.1121/1.1908455
  8. D. J. Scheiber, "Directional pressure gradient hydrophone," in Proc. of 27th Navy Symposium on Underwater Acoustics, pp. 1113-1119, 1969.
  9. M. P. Mongiovi, "Low frequency pressure gradient sensor," J. Acoust. Soc. Am., vol. 59, no. S1, pp. S62- S62, 1976.
  10. J. L. Butler, "Directional transducer," U. S. Patent 4,326,275, 1982.
  11. R. Hickling, W. Wei, and R. Raspet, "Finding the direction of a sound source using a vector soundintensity probe," J. Acoust. Soc. Am., vol. 94, no. 4, pp. 2408-2412, 1993. https://doi.org/10.1121/1.407460
  12. M. B. Moffett, D. H. Trivett, P. J. Klippel, and P. D. Baird, "A piezoelectric, flexural-disk, neutrally buoyant, underwater accelerometer," IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 45, no. 5, pp. 1341- 1346, 1998. https://doi.org/10.1109/58.726460
  13. P. A. Wlodkowski, K. Deng, and M. Kahn, "The development of high-sensitivity, low-noise accelerometers utilizing single crystal piezoelectric Materials," Sensors and Actuators A: Physical, vol. 90, no. 1-2, pp. 125- 131, 2001. https://doi.org/10.1016/S0924-4247(01)00449-6
  14. M. T. Silvia and R. T. Richards, "A theoretical and experimental investigation of low-frequency acoustic vector sensors," in Proc. IEEE OCEANS '02 MTS Conf., vol. 3, pp. 1886-1897, 2002.
  15. S. H. Ko, G. A. Brigham, and J. L. Butler, "Multimode spherical hydrophone," J. Acoust. Soc. Am., vol. 56, no. 6, pp. 1890-1898, 1974. https://doi.org/10.1121/1.1903528
  16. R. S. Gordon, L. Parad, and J. L. Butler, "Equivalent circuit of a ceramic ring transducer operated in the dipole mode," J. Acoust. Soc. Am., vol. 58, no. 6, pp. 1311-1314, 1975. https://doi.org/10.1121/1.380814
  17. J. L. Butler, A. L. Butler, and J. A. Rice, "A tri-modal directional transducer," J. Acoust. Soc. Am., vol. 115, no. 2, pp. 658-665, 2004. https://doi.org/10.1121/1.1639326
  18. 강국진, 노용래, "유한요소법을 이용한 Tonpilz 트랜스듀서의 최적구조 설계," 한국음향학회지, 22권, 8호, pp. 637-644, 2003.

Cited by

  1. Fabrication and Characterization of an Underwater Acoustic Tonpilz Vector Sensor for the Estimation of Sound Source Direction vol.34, pp.5, 2015, https://doi.org/10.7776/ASK.2015.34.5.351
  2. Direction-of-Arrival Estimation for the Ring-Type Multimode Vector Hydrophone based on the Pressure Gradient-Acceleration Relationship vol.34, pp.1, 2015, https://doi.org/10.7776/ASK.2015.34.1.066
  3. Analysis of a thickness-shear mode vibrator for the accelerometer in vector hydrophones vol.266, 2017, https://doi.org/10.1016/j.sna.2017.09.007