DOI QR코드

DOI QR Code

Estimation of Characteristics Change on Transverse Mode PZT Vibrator Under Space Environment

우주환경하에서 횡진동 모드 PZT진동자의 특성변화 예측

  • Received : 2012.06.27
  • Accepted : 2012.08.11
  • Published : 2012.11.30

Abstract

The temperature dependence of the characteristics in a PZT-5 piezoelectric ceramic vibrator with the transverse mode was investigated in the range of $-100^{\circ}C$ to $90^{\circ}C$ using a thermal vacuum chamber to utilize the vibrator in aerospace industries. As the results, at room temperature, the resonant and anti-resonant frequencies had the minimum value, whereas, the dielectric constant increased linearly from about 2500 to 7500 in the given temperature range. The mechanical loss decreased linearly from 0.08 to 0.03. Through the regression analysis, the temperature dependence functions of the characteristics were derived to linear and square regression functions. Applying the functions, the input admittance characteristics of the piezoelectric vibrator were calculated, and the results showed good agreement with measured ones. It can be confirmed that this method is useful to estimate the characteristics change of the piezoelectric vibrator caused by the temperature change under the space environment.

횡진동 모드 압전진동자의 우주-항공산업에의 적극적인 활용을 위하여 우주환경을 모사한 열진공 챔버를 사용하여 $-100^{\circ}C{\sim}90^{\circ}C$의 범위에서 PZT-5계열의 압전세라믹 진동자의 온도변화에 따른 특성변화를 조사하였다. 그 결과 공진 및 반공진주파수는 상온일 때를 중심으로 온도의 변화에 따라 증가하였고 유전상수의 경우 주어진 온도 범위에서 2500~7500의 범위에서 선형적으로 증가하였다. 기계적 손실은 0.08~0.03의 범위에서 선형적으로 감소하는 경향을 보였다. 이들에 대한 회귀분석을 통하여 1차원 및 2차원 회귀함수를 이용하여 압전진동자의 각 특성에 대한 온도의존함수들을 도출하였다. 이들 함수를 적용하여 구한 횡모드 압전 진동자의 입력어드미턴스의 계산결과는 측정결과와 좋은 일치를 보이고 있었으며 우주환경에서의 온도에 따른 특성변화 예측에 유효함을 확인할 수 있었다.

Keywords

References

  1. Yongrae Roh, Susung Lee, Wooseok Han, "Design and fabrication of a new traveling wave-type ultrasonic linear motor," Sensors and Actuators A: Physical, vol. 94, Issue 3, pp. 205-210, 2001. https://doi.org/10.1016/S0924-4247(01)00707-5
  2. Seung-Hee Lee, Yongrae Roh, Woo-Seok Han, Yeon- Bo Kim, "Design and fabrication of ultrasonic traveling wave bi-directional linear motors," Ultrasonics Symposium Proceedings, IEEE, vol. 1, pp. 657-660, 1999.
  3. 김정순, 김무준, 하강렬, 강갑중, "압전 횡효과를 이용한 무지향성 주파수가변 초음파트랜스듀서," 센서학회지, 13권, 6호, pp. 417-423, 2004. https://doi.org/10.5369/JSST.2004.13.6.417
  4. Jong-in Im, Sunuk Kim and Yong-rae Roh, "Design and Evaluation of Piezoelectric Bimorphs Combined with Multilayer Actuator Using FEM," Journal of the Korean Physical Socity, vol. 32, no. 93, pp. 1251-1253, 1998.
  5. Xiaoming Wang, Zhan Kang, Yiqiang Wang, "Topology design of slender piezoelectric actuators with repetitive component patterns," Journal of Intelligent Material Systems and Structures, vol. 22, no. 18, pp. 2161-2172, 2011. https://doi.org/10.1177/1045389X11426181
  6. Zhen Luo, Wei Gao, Chongmin Song, "Design of Multi-phase Piezoelectric Actuators," Journal of Intelligent Material Systems and Structures, vol. 21, no. 18, pp. 1851-1865, 2010. https://doi.org/10.1177/1045389X10389345
  7. Mao-Hsiung Chiang, "Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy," Sensors, vol. 10, no. 4, pp. 2675-2693, 2010. https://doi.org/10.3390/s100402675
  8. Allen J Bronowicki, Nandu S Abhyankar and Steven F Griffin, "Active vibration control of large optical space structures," Smart Mater. Struct. vol. 8, pp. 740-752, 1999. https://doi.org/10.1088/0964-1726/8/6/304
  9. Jack Jacobs, James Ross, Steve Hadden, Mario Gonzalez, Zach Rogers, Benjamin Henderson, "Miniature Vibration Isolation System for Space Applications -Phase II," Proceedings of SPIE vol. 5388 (SPIE, Bellingham, WA, 2004), pp. 32-42, 2004.
  10. T W Nye, R A Manning and K Qassim, "Performance of active vibration control technology: the ACTEX flight experiments," Smart Mater. Struct. vol. 8, pp. 767-780, 1999. https://doi.org/10.1088/0964-1726/8/6/306
  11. Eric H. Anderson, John P. Fumo, R. Scott Erwin, "Satellite Ultraquiet Isolation Technology Experiment," IEEE Aerospace Conference Big Sky, Montana March 19-25, pp. 1-17, 2000.
  12. IEEE Standard on Piezoelectricity, IEEE/ANSI Std. 176-1978, pp. 27-34, 1979.
  13. Min-Ku Chae, Moo-Joon Kim, Kang-Lyeol Ha and Chai-Bong Lee, "Focal Length Controllable Ultrasonic Transducer Using Bimorph-Type Bending Actuator," Jpn. J. Appl. Phys. vol. 42, pp. 3091-3092, 2003. https://doi.org/10.1143/JJAP.42.3091
  14. S. C. Her and C. Y. Liu, "The deflection of a simply supported plate induced by piezoelectric actuators," Journal of Mechanical Science and Technology, vol. 21, pp. 1745-1751, 2007. https://doi.org/10.1007/BF03177404
  15. Youngjin Lee, Seunghee Lee, Yongrae Roh, "Design of withdrawal-weighted SAW filters," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 3 pp. 337-344, 2002. https://doi.org/10.1109/58.990949
  16. J. Yang, H. Fang, and Q. Jiang, "Equations for a piezoelectric parallelepiped and applications in a gyroscope", Int. J. of Applied Electromagnetics and Mechanics, vol. 10, pp. 337-350, 1999.
  17. J. S. Yang, "Analysis of ceramic thickness shear piezoelectric gyroscopes", J. Acoust. Soc. Am., vol. 102, pp. 3542-3548, 1997. https://doi.org/10.1121/1.420398
  18. J. H. McClellan, T. W. Parks and L. R. Rabiner, "A computer program for designing optimum FIR linear phase digital filters," IEEE Transactions on Audio and Electroacoustics, vol. AU-21, pp. 506-526, 1973.
  19. Y. Ohmachi, and N. Uchida, "Temperature Dependence of Elastic, Dielectric, and Piezoelectric Constants in $TeO_2$ Single Crystals," J. Appl. Phys., vol. 41, no. 6, pp. 2307-2311, 1970. https://doi.org/10.1063/1.1659223
  20. R. T. Smith and F. S. Welsh, "Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate," J. Appl. Phys. vol. 42, no. 6, pp. 2219-2230, 1971. https://doi.org/10.1063/1.1660528
  21. K. Omote, H. Ohigashi, and K. Koga, "Temperature dependence of elastic, dielectric, and piezoelectric properties of single crystalline" films of vinylidene fluoride trifluoroethylene copolymer," J. Appl. Phys., vol. 81, no. 6, pp. 2760-2769, 1997. https://doi.org/10.1063/1.364300
  22. R. A. Wolf and S. Trolier-McKinstry, "Temperature dependence of the piezoelectric response in lead zirconate titanate films," J. Appl. Phys., vol. 95, no. 3, pp. 1397-1406, 2004. https://doi.org/10.1063/1.1636530
  23. C. Miclea, C. Tanasoiu, L. Amarande, C.F. Miclea, C. Plavitu, M. Cioangher, L. M. Trupina, C.T. Miclea, C. David, "Effect of Temperature on The Main Piezoelectric Parameters of A Soft PZT Ceramic," ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, vol. 10, no. 3, pp. 243-250, 2007.
  24. R. G. Sabat, B. K. Mukherjee, W Ren., and G. Yang, "Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics," J. Appl. Phys. vol. 101, pp. 064111-1-064111-3, 2007. https://doi.org/10.1063/1.2560441
  25. T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, Tokyo, pp. 83-189, 1990.
  26. H. Ohigashi, "Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method," J. Appl. Phys. vol. 47, no. 3, pp. 949-955, 1976. https://doi.org/10.1063/1.322685
  27. M. Trainer, "Ferroelectrics and the Curie-Weiss law," Eur. J. Phys. vol. 21, pp. 459-464, 2000. https://doi.org/10.1088/0143-0807/21/5/312