References
- R. P. Agarwal, Sharp Opial-type inequalities involving r-derivatives and their applications, Tohoku Math. J. 47 (1995), no. 4, 567-593. https://doi.org/10.2748/tmj/1178225462
- R. P. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993.
- R. P. Agarwal and P. Y. H. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Kluwer Academic Publishers, Dordrecht, 1995.
- R. P. Agarwal and P. Y. H. Pang, Sharp Opial-type inequalities in two variables, Appl. Anal. 56 (1995), no. 3-4, 227-242. https://doi.org/10.1080/00036819508840324
- R. P. Agarwal and E. Thandapani, On some new integro-differential inequalities, Anal. sti. Univ. "Al. I. Cuza" din Iasi 28 (1982), no. 1, 123-126.
- H. Alzer, An Opial-type inequality involving higher-order derivatives of two functions, Appl. Math. Lett. 10 (1997), no. 4, 123-128. https://doi.org/10.1016/S0893-9659(97)00071-2
- D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992.
- P. R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470-475. https://doi.org/10.1090/S0002-9947-1962-0139706-1
- W. S. Cheung, On Opial-type inequalities in two variables, Aequationes Math. 38 (1989), no. 2-3, 236-244. https://doi.org/10.1007/BF01840008
- W. S. Cheung, Some new Opial-type inequalities, Mathematika 37 (1990), no. 1, 136-142. https://doi.org/10.1112/S0025579300012869
- W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl. 162 (1991), no. 2, 317-321. https://doi.org/10.1016/0022-247X(91)90152-P
- W. S. Cheung, Opial-type inequalities with m functions in n variables, Mathematika 39 (1992), no. 2, 319-326. https://doi.org/10.1112/S0025579300015047
- W. S. Cheung, D. D. Zhao, and J. E. Pecaric, Opial-type inequalities for Differential Operators, to appear in Nonlinear Anal.
- K. M. Das, An inequality similar to Opial's inequality, Proc. Amer. Math. Soc. 22 (1969), 258-261.
- E. K. Godunova and V. I. Levin, An inequality of Maroni, Mat. Zametki 2 (1967), 221-224.
- L. K. Hua, On an inequality of Opial, Sci. Sinica 14 (1965), 789-790.
- B. Karpuz, B. Kaymakcalan, and U. M. Ozkan, Some multi-dimenstonal Opial-type inequalities on time scales, J. Math. Inequal. 4 (2010), no. 2, 207-216.
- J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl. 167 (1992), no. 1, 98-100. https://doi.org/10.1016/0022-247X(92)90238-9
- D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, New York, 1970.
- D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Inequalities involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.
- Z. Opial, Sur une inegalite, Ann. Polon. Math. 8 (1960), 29-32. https://doi.org/10.4064/ap-8-1-29-32
- B. G. Pachpatte, On integral inequalities similar to Opial's inequality, Demonstratio Math. 22 (1989), no. 1, 21-27.
- B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl. 120 (1986), no. 2, 547-556. https://doi.org/10.1016/0022-247X(86)90176-9
- B. G. Pachpatte, On some new generalizations of Opial inequality, Demonstratio Math. 19 (1986), no. 2, 281-291.
- B. G. Pachpatte, A note on generalized Opial type inequalities, Tamkang J. Math. 24 (1993), no. 2, 229-235.
- J. E. Pecaric, An integral inequality, Analysis, geometry and groups: a Riemann legacy volume, 471-478, Hadronic Press Collect. Orig. Artic., Hadronic Press, Palm Harbor, FL, 1993.
- J. E. Pecaric and I. Brnetic, Note on generalization of Godunova-Levin-Opial inequality, Demonstratio Math. 30 (1997), no. 3, 545-549.
- J. E. Pecaric and I. Brnetic, Note on the generalization of the Godunova-Levin-Opial inequality in several independent variables, J. Math. Anal. Appl. 215 (1997), no. 1, 274-282. https://doi.org/10.1006/jmaa.1997.5529
- G. I. Rozanova, Integral inequalities with derivatives and with arbitrary convex functions, Moskov. Gos. Ped. Inst. Vcen. Zap. 460 (1972), 58-65.
- D. Willett, The existence-uniqueness theorem for an n-th order linear ordinary differential equation, Amer. Math. Monthly 75 (1968), 174-178. https://doi.org/10.2307/2315901
- G. S. Yang, Inequality of Opial-type in two variables, Tamkang J. Math. 13 (1982), no. 2, 255-259.
- G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78-83. https://doi.org/10.3792/pja/1195522120
- C. J. Zhao and W. S. Cheung, Sharp integral inequalities involving high-order partial derivatives, J. Ineq. Appl. 2008 (2008), Article ID 571417, 10 pages. https://doi.org/10.1155/2008/571417
Cited by
- Opial-Type Inequalities with Two Unknowns and Two Functions on Time Scales vol.44, pp.3, 2016, https://doi.org/10.1007/s10013-015-0169-4