DOI QR코드

DOI QR Code

Design of a Thermal Energy Harvesting Circuit with MPPT Control

MPPT 제어 기능을 갖는 열에너지 하베스팅 회로 설계

  • 윤은정 (인천대학교 전자공학과) ;
  • 김수진 (인천대학교 전자공학과) ;
  • 박금영 (인천대학교 전자공학과) ;
  • 오원석 (전자부품연구원 SoC연구센터) ;
  • 유종근 (인천대학교 전자공학과)
  • Received : 2012.10.05
  • Accepted : 2012.10.25
  • Published : 2012.11.30

Abstract

In this paper, a thermal energy harvesting circuit with MPPT control is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the linear relationship between the open-circuit voltage of a thermoelectric generator(TEG) and its MPP voltage. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a TEG, makes the reference voltages using sampled voltage and delivers the maximum available power to load. Simulation results show that the maximum power efficiency of the designed circuit is 94%. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process, and the chip area except PAD is $1168.7{\mu}m{\times}541.3{\mu}m$.

본 논문에서는 MPPT 제어 기능을 갖는 열에너지 하베스팅 회로를 설계하였다. MPPT(Maximum Power Point Tracking) 제어는 열전소자의 개방회로전압과 MPP 전압간의 관계를 이용하였으며 열전소자의 개방회로전압을 주기적으로 샘플링 함으로써 이를 이용해 MPPT 기준전압을 생성하여 이를 기준으로 부하로의 에너지 공급을 제어한다. 모의실험 결과 94%의 최대 전력 효율을 보였다. 제안된 열에너지 하베스팅 회로는 $0.35{\mu}m$ CMOS 공정으로 설계하였으며 설계된 칩 면적은 PAD를 제외하고 $1168.7{\mu}m{\times}541.3{\mu}m$이다.

Keywords

References

  1. D. Dondi, A. Bertacchini, L. Larcher, P. Pavan, D. Brunelli, and L. Benini, "A solar energy harvesting circuit for low power applications," IEEE ICSET, pp. 945-949, 2008.
  2. J. Colomer-Farrarons, P. Miribel-Catala, A. Saiz-Vela, M. Puig-Vidal, and J. Samitier, "Power-Conditioning Circuitry for a Self-Powered System Based on Micro PZT Generators in a $0.13{\mu}m$ Low-Voltage Low-Power Technology," IEEE Trans. on Industrial Electronics, pp. 3249-3257, September 2008.
  3. I. Doms, P. Merken, C. Van Hoof, R.P. Mertens, "Capacitive Power Management Circuit for Micropower Thermoelectric Generators With a $1.4{\mu}A$ Controller", IEEE Solid-State Circuits Society, pp 2824-2833, 2009.
  4. C. Hua et al., "Implementation of a DSP-controlled photovoltaic system with peak power tracking," IEEE Trans. Ind. Electron., vol. 45, pp. 99-107, Feb. 1998. https://doi.org/10.1109/41.661310
  5. W. Wu et al., "DSP-Based multiple peak power tracking for expandable power system," in Proc. Applied Power Electronics Conf. and Exposition 2003, vol. 1, pp. 525-530, 2003.
  6. C. Hua and C. Shen, "Control of DC/DC converters for solar energy system with maximum power tracking", 23rd IECON, vol.2, pp. 827-832, 1997.
  7. H. Shao, C. Tsui, and W. Ki, "The Design of a Micro Power Management System for Applications Using Photovoltaic Cells With the Maximum Output Power Control", IEEE Trans. on VLSI Systems, vol.17, no.8, pp. 1138-1142, 2009. https://doi.org/10.1109/TVLSI.2008.2001083
  8. 이은도, "열전소자의 기술개발 현황", 한국 기계 산업 진흥회, pp. 71-77, 2010.
  9. H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, "Efficient Power Management Circuit: From Thermal Energy Harvesting to Above-IC Microbattery Energy Storage", IEEE Solid-State Circuits Society, pp 246-255, 2008.
  10. Ko Ko Win, S.,Dasgupta, S.K. Panda, "An optimized MPPT circuit for thermoelectric energy harvester for low power applications ", IEEE ICPE & ECCE, pp. 1579-1584, 2011.
  11. Y.K. Ramadass, A.P. Chandrakasan, "A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage", IEEE Solid-State Circuits Society, pp. 333-341, 2011
  12. V. Leonov, P. Fiorini, S. Sedky, T. Torfs, and C. Van Hoof, "Thermoelectric MEMS generators as a power supply for a body area network," in Proc. Int. Conf. Solid-State Sensors, Actuators and Microsystems, pp. 291-294, 2005.
  13. Tellurex Thermoelectric Energy Harvester- G1-1.0-127-1.27, Tellurex [Online]. Available: http://www.tellurex.com

Cited by

  1. A Battery Charger Using Photovoltaic Energy Harvesting with MPPT Control vol.19, pp.2, 2015, https://doi.org/10.7471/ikeee.2015.19.2.201