DOI QR코드

DOI QR Code

PBT와 Nylon6,12의 블렌드 특성과 core/shell 구조를 갖는 PBT/Nylon6,12 미세모의 제조 및 압출조건

Blend Characteristics of PBT, Nylon6,12 and Preparation of PBT/Nylon6,12 Micro Fiber with Core/shell Structure and their Extrusion Conditions

  • 박희만 (충남대학교 화학공학과) ;
  • 이선호 (충남대학교 화학공학과) ;
  • 곽노석 (충남대학교 화학공학과) ;
  • 황치원 (충남대학교 화학공학과) ;
  • 박성규 (충남대학교 화학공학과) ;
  • 황택성 (충남대학교 화학공학과)
  • Park, Hui-Man (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Seon-Ho (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kwak, Noh-Seok (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Hwang, Chi Won (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Park, Sung-Gyu (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Hwang, Taek Sung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 투고 : 2012.04.05
  • 심사 : 2012.09.05
  • 발행 : 2012.12.01

초록

압출성형을 통한 core/shell 구조를 갖는 폴리부틸렌테레프탈레이트(PBT)/Nylon6,12 미세모를 제조함에 있어 최적의 압출조건을 규명하기 위하여, 압출온도와 배합비를 다르게 하여 제조한 블렌드 미세모의 상용성을 SEM 모폴로지와 DSC 분석을 통해 확인하고 UTM을 통해 압출속도에 따른 기계적 물성의 변화를 측정하였다. SEM 모폴로지 분석결과 압출온도가 증가할수록 분산상인 Nylon6,12 비드의 크기가 감소하였으며, Nylon6,12의 함량이 증가할수록 PBT 매트릭스 내 Nylon6,12의 상분리 현상이 감소하였다. DSC 분석 결과도 같은 경향을 나타냈는데, 압출온도가 상승함에 따라 녹는점에 해당하는 피크들의 경계가 사라지고, Nylon6,12의 비율이 증가할수록 두 피크의 간격이 좁아지는 것을 확인할 수 있었다. 한편 PBT/Nylon6,12 블렌드 미세모의 인장강도와 연신율 및 굴곡강도와 굴곡탄성률 모두 압출온도가 $260^{\circ}C$ 일 때까지 증가하였으나 그 이상의 온도에서는 오히려 감소하였다. $260^{\circ}C$에서의 인장강도와 연신율, 굴곡강도, 굴곡탄성률은 각각 560 $kg_f/cm^2$와 220%, 807 $kg_f/cm^2$, 22,146 $kg_f/cm^2$였는데 이는 PBT와 Nylon6,12의 중간 값을 상회하는 수치로 두 물질이 압출성형에 의한 블렌드 효과가 있다는 것을 확인할 수 있었다. 이처럼 우수한 상용성을 보일 때의 블렌드 압출 조건들을 토대로 하여 core/shell 구조의 이중구조 미세모를 제조하였다.

Poly(butylene terephthalate) (PBT)/Nylon6,12 core/shell micro fiber were prepared by extrusion molding. To investigate their optimum extrusion conditions, compatibility of PBT/Nylon6,12 blend micro fiber in conformity to their weight ratio and manufacture temperature was explored with SEM morphology and DSC. The alterations in their mechanical properties by extrusion speed were compared and analyzed through a UTM. In comparison with SEM figures, the domain sizes of Nylon6,12 were gradually declined by increasing the extrusion temperature of blends. Furthermore, according to these SEM images, the phase separation between Nylon6,12 domain and PBT matrix became indistinct with increasing of weight percentage of Nylon6,12. In case of DSC, the boundaries of two peaks were almost disappeared when increasing the extrusion temperature and also intervals of each two melting peaks became narrow as increasing the Nylon6,12 ratio. The mechanical properties including tensile strength, elongation, flexural strength and flexural modulus were increased as the increase in the extrusion temperature until $260^{\circ}C$. However, the mechanical properties were actually deteriorated over $260^{\circ}C$. The tensile strength, elongation, flexural strength and flexural modulus at $260^{\circ}C$ were 560 $kg_f/cm^2$, 220%, 807 $kg_f/cm^2$ and 22,146 $kg_f/cm^2$, respectively. These values are more than intermediate values of mechanical properties of PBT and Nylon6,12. These results mean that there is compatibility between PBT and Nylon6,12. Based on the extrusion conditions that produced optimum compatibility of blend, as a result, our group obtained micro fibers with the core/shell structure.

키워드

참고문헌

  1. Mahfuz, H., Hasan, M. M., Rangari, V. K. and Jeelani, S., "Reinforcement of Nylon-6 Filaments with $SiO_{2}$ Nanoparticles and Comparison of Young's Modulus with Theoretical Bounds," Macromol. Mater. Eng. 292(4), 437-444(2007). https://doi.org/10.1002/mame.200600417
  2. Lyu, M. Y., Choi, D. H., Kim, Y. H. and Nah, C. W., "Chemical Resistance of Polycarbonate/Poly(butylene terephthalate) Blends," Polymer(Korea), 34(3), 237-241(2010).
  3. Mallick, S. and Khatua, B. B., "Morphology and Properties of Nylon6 and High Density Polyethylene Blends in Absence and Presence of Nanoclay," J. Appl. Polym. Sci., 121(1), 359-368 (2011). https://doi.org/10.1002/app.33580
  4. Araujo, E. M., Hage, E. Jr. and Carvalho, A. J. F., "Thermal Properties of Nylon6/ABS Polymer Blends: Compatibilizer effect," J. Mater. Sci., 39(4), 1173-1178(2004). https://doi.org/10.1023/B:JMSC.0000013872.86575.36
  5. Hasan, M. M., Zhou, Y., Mahfuz, H. and Jeelani, S., "Effect of $SiO_{2}$ Nanoparticle on Thermal and Tensile Behavior of Nylon6," Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 429(1-2), 181-188(2006). https://doi.org/10.1016/j.msea.2006.05.124
  6. Penning, J. P., van Ruiten, J., Brouwer, R. and Gabrielse, W., "Orientation and Structure Development in Melt-spun Nylon-6 Fibres," Polymer, 44(19), 5869-5876(2003). https://doi.org/10.1016/S0032-3861(03)00535-4
  7. Lee, Y. K., Kim, J. M. and Kim, W. N., "Mechanical and Morphological Properties of Poly(acrylonitrile-butadiene-styrene) and Poly(lactic acid) Blends," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49(4), 438-442(2011). https://doi.org/10.9713/kcer.2011.49.4.438
  8. Kim, D. and Kim, S. W., "Barrier Property and Morphology of Polypropylene/polyamide Blend Film," Korean J. Chem. Eng., 20(4), 776-782(2003). https://doi.org/10.1007/BF02706923
  9. Jordhamo, G. R., Manson, J. A. and Sperling, L. H., "Phase Continuity and Inversion in Polymer Blends and Simultaneous Interpenetrating Networks," Polym. Eng. Sci., 26(8), 517(1986). https://doi.org/10.1002/pen.760260802
  10. Wu, S., "Formation of Dispersed Phase in Incompatible Polymer Blends: Interfacial and Rheological Effects," Polym. Eng. Sci., 27(5), 335-343(1987). https://doi.org/10.1002/pen.760270506
  11. Elmendorf, J. J. and van der Vegt, A. K., "A Study on Polymer Blending Microrheology: Part IV. The Influence of Coalescence on Blend Morphology Origination," Polym. Eng. Sci., 26(19), 1332- 1338(1986). https://doi.org/10.1002/pen.760261908
  12. Willis, J. M., Favis, B. D. and Lavallee, C., "The Influence of Interfacial Interactions on the Morphology and Thermal Properties of Binary Polymer Blends," J. Mater. Sci., 28(7), 1749-1757 (1993). https://doi.org/10.1007/BF00595741
  13. Vainio, H. T., Hu, G. H., Lambla, M. and Seppala, J. V., "Functionalized Polypropylene Prepared by Melt Free Radical Grafting of Low Volatile Oxazoline and Its Potential in Compatibilization of PP/PBT Blends," J. Appl. Polym. Sci., 61(5), 843-852(1996). https://doi.org/10.1002/(SICI)1097-4628(19960801)61:5<843::AID-APP17>3.0.CO;2-Y
  14. Huang, C.-C. and Chang, F.-C., "Reactive Compatibilization of Polymer Blends of Poly(butylene terephthalate) (PBT) and Polyamide- 6,6 (PA66): 1. Rheological and Thermal Properties," Polymer, 38(9), 2135-2141(1997). https://doi.org/10.1016/S0032-3861(96)00740-9
  15. Huang, C.-C. and Chang, F.-C., "Reactive Compatibilization of Polymer Blends of Poly(butylene terephthalate) and Polyamide 6,6: 2. Morphological and Mechanical Properties," Polymer, 38(17), 4287-4293(1997). https://doi.org/10.1016/S0032-3861(96)01040-3
  16. Kang, T.-K., Kim, Y., Cho, W.-J. and Ha, C. S., "Effects of Amorphous Nylon on the Properties of Poly(butylene terephthalate) and 70/30 Poly(butylene terephthalate)/nylon 6 Blends," Polym. Eng. Sci., 36(20), 2525-2533(1996). https://doi.org/10.1002/pen.10651
  17. Kim, S.-J., Kim, D.-K., Cho, W.-J. and Ha, C.-S., "Morphology and Properties of PBT/nylon 6/EVA-g-MAH Ternary Blends Prepared by Reactive Extrusion," Polym. Eng. Sci., 43(6), 1298-1311 (2003). https://doi.org/10.1002/pen.10110
  18. Scaffaro, R., Botta, L., La Manita, F. P., Gleria, M., Bertani, R., Samperi, F. and Scaltro, G., "Effect of Adding New Phosphazene Compounds to Poly(butylene terephthalate)/polyamide blends. II: Effect of Different Polyamides on the Properties of Extruded Samples," Polym. Degrad. Stab., 91(10), 2265-2274(2006). https://doi.org/10.1016/j.polymdegradstab.2006.04.019
  19. Tsi, H.-Y., Tsen, W.-C., Shu, Y.-C., Chuang, F.-S. and Chen, C.- C., "Compatibility and Characteristics of Poly(butylene succinate) and Propylene-co-ethylene Copolymer Blend," Polym. Test, 28(8), 875-885(2009). https://doi.org/10.1016/j.polymertesting.2009.08.004
  20. Elmqvist, C. and Svanson, S. E., "A DSC Investigation of Compatibility in Blends of Poly Vinyl Chloride and Ethylene-vinyl Acetate Copolymer," Eur. Polym. J., 12(8), 559-561(1976). https://doi.org/10.1016/0014-3057(76)90015-X
  21. Paci, M., Liu, M., Magagnini, P. L., La Manita, F. P. and Valenza, A., "Compatibility of Blends of Poly(butylene terephthalate) and Liquid Crystal Polymers: a DSC Study," Thermochim. Acta, 137(1), 105-114(1988). https://doi.org/10.1016/0040-6031(88)87471-9
  22. Lee, J. G., Park, S. H. and Kim, S. H., "Investigation of Properties of the PET Film Dependent on the Biaxial Stretching," Polymer (Korea), 34(6), 579-587(2010).
  23. Kim, B. S. and Sang, Y. J., "Physical Properties of Ultradrawn Poly(vinylidene fluoride)/Poly(vinyl acetate) Blends," Polymer (Korea), 20(2), 297-304(1996).