DOI QR코드

DOI QR Code

Phenol Concentration using Thermal Simulated Moving Bed Concentrator

TSMBC(Thermal Simulated Moving Bed Concentrator)를 이용한 페놀 농축

  • Gil, Mun-Seok (Department of Biological Engineering, Inha University) ;
  • Kim, Jin-Il (Department of Biological Engineering, Inha University) ;
  • Lee, Ju Weon (Max Planck Institute for Dynamics of Complex Technical Systems) ;
  • Koo, Yoon-Mo (Department of Biological Engineering, Inha University)
  • Received : 2012.07.02
  • Accepted : 2012.08.24
  • Published : 2012.12.01

Abstract

Conventional SMB process is operated using 4-zone having several chromatography columns in each zone. Unlike batch chromatography, SMB process can continuously separate binary materials. Both high productivity and purity are obtainable by using SMB process. In this study, the simulation on Thermal Simulated Moving Bed Concentrator (TSMBC) which is a SMB process with thermal swing adsorption was carried out. The advantage of TSMBC is that adsorption isotherm can be easily controlled by thermal wave or direct heating. Recovery of pure water and concentration of phenol was studied in simulation. To verify environmental-friendly potential of TSMBC, DOWEX $1{\times}4$ was chosen as an adsorbent and phenol was selected as a target material. When 3 columns were used in this study, concentration of phenol is 2.29, 2.28 and 1.31 times higher than injected sample. However, a contamination of phenol in solvent port was found, probably due to the restriction of adsorption isotherm of phenol on DOWEX $1{\times}4$.

일반적인 SMB 공정은 여러 개의 크로마토그래피 컬럼을 갖는 4개의 구역으로 구성되어 있다. SMB는 회분식 크로마토그래피와는 달리 연속적으로 이성분계 물질 분리가 가능한 것이 가장 큰 장점이다. SMB 공정을 이용하여 목적 물질의 높은 생산성과 높은 순도의 물질을 얻어낼 수 있다. 이러한 SMB의 특징을 더욱 부각시키려는 연구들이 현재 진행되고 있다. 본 연구에서는 기존 SMB 공정에 온도의 변화를 추가한 Thermal Simulated Moving Bed Concentrator (TSMBC) 공정의 모사를 연구하였다. TSMBC의 장점으로는 온도의 변화를 통하여 등온 흡착식의 조작을 가할 수 있으며, 목적 물질에 따른 적용 분야가 다양하다는 것이다. 본 연구에서는 환경 친화적 공정으로 TSMBC의 적용 가능성을 시험하기 위해서 페놀 폐수로부터 순수한 용매인 물을 얻어내고 용질인 페놀은 농축시키는 모사 과정을 연구하였다. 고정상과 목적물질인 DOWEX $1{\times}4$와 페놀을 선정하고 고정상에 대한 페놀의 등온 흡착식을 측정하였다. 모사 과정에서는 총 세 가지 종류의 컬럼을 사용하였고 주입 시료 대비 2.29배, 2.28배, 그리고 1.31배의 목적 물질 농축을 확인할 수 있었다. 그러나 solvent port에서 용질의 배출도 발견되어 DOWEX $1{\times}4$ 고정상이 상온에서 갖는 페놀의 흡착식에 대한 한계점을 확인하였다.

Keywords

References

  1. Broughton, D. B., "Molex Case History of a Process," Chem. Eng. Prog., 64(1), 60-72(1968).
  2. Broughton, D. B., Neuzil, R. W., Pharis, J. M. and Brearley, C. S., "The Parex Process for Recovering Paraxylene," Chem. Eng. Prog., 66(1), 70-82(1970).
  3. Ching, C. B., Chu, K. H., Hidajat, K. and Ruthven, D. M., "Experimental Study of a Simulated Counter-Current Adsorption System-VII: Effects of Non-Linear and Interacting Isotherms," Chem. Eng. Sci., 48(7), 1343-1351(1993). https://doi.org/10.1016/0009-2509(93)81014-M
  4. Pais, L. S., Loureiro, J. M. and Rodrigues, A. E., "Separation of 1,1'-bi-2-Naphthol Enantiomers by Continuous Chromatography in Simulated Moving Bed," Chem. Eng. Sci., 52(2), 245-257(1997). https://doi.org/10.1016/S0009-2509(96)00398-3
  5. Han, S. K., Yeo, M. S., Park, T. J., Koo, Y. M. and Row, K. H., "Chiral Separation of Bupivacaine by Simulated Moving Bed (2) Determination of Optimum Condition by Simulation," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 41(6), 728-735(2003).
  6. Zoltan, M., Melinda, N., Antal, A., Laszlo, H., Janos, A., Istvan, P. and Tibor, S., "Separation of Amino Acids with Simulated Moving Bed Chromatography," J. Chromatogr. A., 1075(1-2), 77-86(2005). https://doi.org/10.1016/j.chroma.2005.03.083
  7. Xie, Y., Wu, D., Ma, Z. and Wang, N.-H. L., "Extended Standng Wave Design Method for Simulated Moving Bed Chromatography: Linear Systems," Ind. Eng. Chem. Res., 39(6), 1993-2005 (2000). https://doi.org/10.1021/ie9905052
  8. Ester Junko Tomotani and Michele Vitolo, "Production of High-fructose Syrup Using Immobilized Invertase in a Membtane Reactor," J. Food Eng., 80(2), 662-667(2007). https://doi.org/10.1016/j.jfoodeng.2006.07.002
  9. Zhang, Z., Mazzotti, M. and Morbidelli, M., "PowerFeed Operation of Simulated Moving Bed Units: Changing Flow-Rates during the Switching Interval," J. Chromatogr. A., 1006(1-2), 87-89(2003). https://doi.org/10.1016/S0021-9673(03)00781-7
  10. Long, N. V. D., Lee, J. W., Le, T.-H., Kim, J.-I. and Koo, Y.-M., "Solvent-gradient SMB to separate o-xylene and p-xylene," Korean J. Chem. Eng., 28(4), 1110-1119(2011) https://doi.org/10.1007/s11814-010-0475-1
  11. Abel, S., Mazzotti, M. and Morbidelli, M., "Solvent Gradient Operation of Simulated Moving Beds : I. Linear Isotherms," J. Chromatogr. A., 944(1-2), 23-39(2002). https://doi.org/10.1016/S0021-9673(01)01087-1
  12. Gottschlich, N. and Kasche, V., "Purification of Monoclonal Antibodies by Simulated Moving-Bed Chromatography," J. Chromatogr. A., 765(2), 201-206(1997). https://doi.org/10.1016/S0021-9673(96)00932-6
  13. Juza, M., Mazzotti, M. and Morbidelli, M., "Simulated Movingbed Chromatography and Its Application to Chirotechnology," Trends Biotechnol., 18(3), 108-118(2000). https://doi.org/10.1016/S0167-7799(99)01419-5
  14. Kim, J.-K., Abunsser, N., Wankat, P. C., Stawarz, A. and Koo, Y.-M., "Thermally Assisted Simulated Moving Bed Systems," Adsorption, 11(1), 579-584(2005). https://doi.org/10.1007/s10450-005-5988-2
  15. Lee, J. W. and Wankat, P. C., "Thermal Simulated Moving Bed Concentrator," Chem. Eng. J., 166(2), 511-522(2011). https://doi.org/10.1016/j.cej.2010.11.009
  16. Wilhelm, R. H., Rice, A. W. and Bendelius, A. R., "Parametric Pumping: a Dynamic Principle for Separating Fluid Mixtures," Ind. Eng. Chem. Fundam., 5(1), 141-144(1966). https://doi.org/10.1021/i160017a028
  17. Wilhelm, R. H. and Sweed, N. H., "Parametric Pumping: Separation of Mixture of Toluene and n-Heptane," Science, 159(3814), 522-524(1968). https://doi.org/10.1126/science.159.3814.522
  18. Simon, G., Grevillot, G., Hanák, L., Szánya, T. and Marton, G., "Theoretical Study of Adsorptive Parametric Pumping and Temperature Swing Chromatography with Flow Reversal," Chem. Eng. J., 70(1), 71-80(1998). https://doi.org/10.1016/S1385-8947(98)00079-5
  19. Davesac, R. R., Pinto, L.T., da Silva, F. A., Ferreira, L. M., Rodrigues, A. E., "A Package for Thermal Parametric Pumping Adsorptive Processes," Chem. Eng. J., 76(2), 115-125(2000). https://doi.org/10.1016/S1385-8947(99)00117-5
  20. Bestaman Ozkaya, "Adsorption and Desorption of Phenol on Activated Carbon and a Comparison of Isotherm Models," J. Hazard. Mater., 129(1-3), 158-163(2006). https://doi.org/10.1016/j.jhazmat.2005.08.025
  21. Kim, H., Gritti, F. and Guiochon, G., "Effect of The Temperature on The Isotherm Parameters of Phenol in Reversed-phase Liquid Chromatography," J. Chromatogr. A., 1049(1-2), 25-36(2004). https://doi.org/10.1016/j.chroma.2004.08.025
  22. Ayar, A., Gursal, S., Gurten, A. A. and Gezici, O., "On The Removal of Some Phenolic Compounds from Aqueous Solutions by Using a Sporopollenin-based Ligand-exchange Fixed Bed-isotherm Analysis," Desalination, 219(1-3), 160-170(2008). https://doi.org/10.1016/j.desal.2007.05.012