DOI QR코드

DOI QR Code

Unsteady Mass Transfer Around Single Droplet Accompanied by Interfacial Extraction Reaction of Succinic Acid

숙신산 추출반응이 일어나는 단일 액적계에서의 비정상상태 물질 전달

  • Jeon, Sangjun (R&D Center, GS Caltex Corporation) ;
  • Hong, Won Hi (Department of Chemical & Biomolecular Engineering (BK21 program), KAIST)
  • 전상준 ((주)GS칼텍스, 기술연구소) ;
  • 홍원희 (한국과학기술원, 생명화학공학과)
  • Received : 2012.06.19
  • Accepted : 2012.07.18
  • Published : 2012.12.01

Abstract

The transient mass transfer in a single droplet system consisting of 1-octanol (continuous phase)/aqueous succinic acid solution (dispersed phase) was investigated in the presence of chemical reaction, which is acid/anion exchange reaction of succinic acid and tri-n-octylamine (TOA). This succinic acid extraction by TOA can be considered to occur at the interface between organic and aqueous phase, that is, heterogeneous reaction system. The basic properties of the system such as viscosity, density, distribution coefficient, terminal velocity of droplet, and diffusion coefficient were measured experimentally or calculated theoretically, and used for theoretical calculation of characteristic parameters of mass transfer later. The effects of succinic acid concentration on the terminal velocity was negligible in the existence of TOA, although the terminal velocity increases with succinic acid concentration in the absence of TOA. On the contrary, the terminal velocity decreases with TOA concentration. While droplets falls through organic phase, the trajectory of droplets is observed to oscillate around its vertical path. A mass trnasfer cell was prepared to monitor the mass transfer behavior in a single droplet and used to measure the mean concentration of succinic acid inside droplet. The results are expressed with dimensionless parameters. Under 50 g/L succinic acid condition, the system with 0.1 mol/kg TOA showed that the molar flux decreases in proportion to the decrease of concentration gradient, while in the case of 0.5 mol/kg TOA Sh increases rapidly with time indicating the molar flux of succinic acid decreases relatively slowly compared to the decrease in concentration gradient.

단일 액적 시스템에서의 비정상상태 물질 전달에 대한 연구를 진행하였다. 단일 액적계를 위한 이성분계로는 옥탄올(연속상)-물(분산상) 시스템이 이용되었으며 동반되는 불균일 반응으로는 아민추출제(tri-n-octylamine,TOA)를 이용한 숙신산 추출 반응을 모델 시스템으로 선정하였다. 점도, 밀도, 용질의 분배계수, 연속상에서 하강하는 액적의 종말 속도, 용질과 추출제의 확산계수 등과 같은 시스템의 기본 특성을 파악하기 위한 실험과 이론적 계산들이 수행되었다. 액적의 종말 속도는 숙신산 농도에는 크게 영향을 받지 않는 것으로 보이나 TOA가 없을 때는 숙신산 농도에 따라 약간 증가하는 경향을 보였고, TOA 농도 증가와 함께 감소하였다. 액적의 낙하는 수직 낙하 경로를 기준으로 좌우로 진동하면서 움직이는 경향을 보였다. 낙하하는 액적에서의 물질 전달 관찰을 위해 물질 전달 셀을 제작하여 시간에 따른 액적 내의 평균 농도 변화를 관찰하였고, 그 결과를 무차원 변수를 이용하여 해석하였다. 50 g/L의 숙신산 농도 조건하에서 TOA 농도를 0.1과 0.5 mol/kg 으로 조절하였을 때, 전자의 경우에는 관찰 시간 범위 내에서 일정한 Sh 값을 유지하여 용질의 이동 방향으로의 농도 기울기가 감소함에 따라 훌럭스도 그에 비례하여 감소함을 알 수 있었지만, 후자의 경우에는 시간의 경과와 함께 Sh가 급격히 증가하는 현상을 보여 계면에서의 숙신산 훌럭스 감소에 비해 농도기울기 감소가 상대적으로 빠르게 일어남을 알 수 있다.

Keywords

References

  1. Hong, Y. K., Hong, W. H. and Han, D. H., "Application of Reactive Extraction to Recovery of Carboxylic Acids," Biotechnol. Bioprocess Eng., 6(6), 386-394(2001). https://doi.org/10.1007/BF02932319
  2. Seader, J. D. and Henley, E. J., Separation Process Principles, 2nd ed., John Wiley & Sons, New York(1998).
  3. Uribe-Ramirez, A. R. and Korchinsky, W. J., "Fundamental Theory for Prediction of Multicomponent Mass Transfer in Single- liquid Drops at Intermediate Reynolds Numbers (10 https://doi.org/10.1016/S0009-2509(99)00568-0
  4. Uribe-Ramirez, A. R. and Korchinsky, W. J., "Fundamental Theory for Prediction of Single-component Mass Transfer in Liquid Drops at Intermediate Reynolds Numbers (10 https://doi.org/10.1016/S0009-2509(99)00567-9
  5. Li, X.-J. and Mao, Z.-S., "The Effect of Surfactant on the Motion of a Buoyancy-Driven Drop at Intermediate Reynolds Numbers: A Numerical Approach," J. Colloid Interface Sci., 240(1), 307-322(2001). https://doi.org/10.1006/jcis.2001.7587
  6. Skelland, A. H. P. and Wellek, R. M., "Resistance to Mass Transfer Inside Droplets," AIChE Journal, 10(4), 491-496(1964). https://doi.org/10.1002/aic.690100416
  7. Kronig, R. and Brink, J. C., "On the Theory of Extraction from Falling Droplets," Appl. Sci. Res., A2, 142-155(1950).
  8. Clift, R., GraceJ. R. and Weber, M. E., Bubbles, Drops, and Particles, Academic Press(1978).
  9. Brauer, H., "Unsteady State Mass Transfer Through the Interface of Spherical Particles-I + II," Int. J. Heat Mass Transf., 21(4), 445-465(1978). https://doi.org/10.1016/0017-9310(78)90078-9
  10. Juncu, G., "The Influence of the Henry Number on the Conjugate Mass Transfer from a Sphere I, Physical Mass Transfer," Heat Mass Transf., 37(4-5), 519-530(2001). https://doi.org/10.1007/s002310100211
  11. Brounshtein, B. I., Fishbein, G. A. and Rivikind, V. Y., "Mass Transfer Accompanied by Chemical Conversion of Substance in a Drop," Int. J. Heat Mass Transf., 19(2), 193-199(1976). https://doi.org/10.1016/0017-9310(76)90112-5
  12. Brunson, R. J. and Wellek, R. M., "Mass Transfer Inside Liquid Droplets and Gas Bubbles Accompanied by a Second Order Chemical Reaction," AIChE Journal, 17(5), 1123-1130(1971). https://doi.org/10.1002/aic.690170518
  13. Kleinman, L. S. and Reed, J. X. B., "Interphase Mass Transfer from Bubbles, Drops, and Solid Spheres: Diffusional Transport Enhanced by External Chemical Reaction," Ind. Eng. Chem. Res., 34(10), 3621-3631(1995). https://doi.org/10.1021/ie00037a051
  14. Kleinman, L. S. and Reed, J. X. B., "Unsteady Conjugate Mass Transfer between a Single Droplet and an Ambient Flow with External Chemical Reaction," Ind. Eng. Chem. Res., 35(9), 2875- 2888(1996). https://doi.org/10.1021/ie950671j
  15. Juncu, G., "The Influence of the Henry Number on the Conjugate Mass Transfer from a Sphere: II - Mass Transfer Accompanied by a First-order Chemical Reaction," Heat Mass Transf., 38(6), 523-534(2002). https://doi.org/10.1007/s002310100256
  16. Pawelski, A., Paschedag, A. R. and Kraume, M., "Beschreibung Des Stofftransports Am Einzeltropfen in Anwesehheit Einer Schnellen Chemischen Reacktion Mittels CFD-simulation," Chem. Ing. Tech., 77(7), 874-880(2005). https://doi.org/10.1002/cite.200500062
  17. Jeon, S., Pawelski, A., Kraume, M. and Hong, W. H., "Mass Transfer Enhancement by the Alkaline Hydrolysis of Ethyl Acetate in a Single Droplet System," J. Ind. Eng. Chem., 17(4), 782- 787(2011). https://doi.org/10.1016/j.jiec.2011.05.026
  18. Tamada, J. A., Kertes, A. S. and King, C. J., "Extraction of Carboxylic Acids with Amine Extractants. 1. Equilibria and Law of Mass Action Modeling," Ind. Eng. Chem. Res., 29, 1319-1326(1990). https://doi.org/10.1021/ie00103a035
  19. Jun, Y.-S., Huh, Y. S., Hong, W. H. and Hong, Y. K., "Kinetics of the Extraction of Succinic Acid with Tri-n-octylamine in 1- Octanol Solution," Biotechnol. Prog., 21(6), 1673-1679(2005). https://doi.org/10.1021/bp050083t
  20. Henschke, M. and Pfennig, A., "Mass-Transfer Enhancement in Single-Drop Extraction Experiments," AIChE Journal, 45(10), 2079-2086(1999). https://doi.org/10.1002/aic.690451006
  21. Reid, R. C., Prausnitz, J. M. and Poling, B. E., The Properties of gases and liquids, 4th ed., McGraw-Hill, New York, NY(1988).
  22. Scheibel, E. G., "Correspondence. Liquid Diffusivities. Viscosity of Gases," Ind. Eng. Chem, 46(9), 2007-2008(1954). https://doi.org/10.1021/ie50537a062
  23. Liu, J. G., Luo, G. S., Pan, S. and Wang, J. D., "Diffusion Coefficients of Carboxylic Acids in Mixed Solvents of Water and 1-Butanol," Chem. Eng. and Process., 43(1), 43-47(2004). https://doi.org/10.1016/S0255-2701(02)00182-4
  24. Bhaga, D. and Weber, M. E., "Bubbles in Viscous Liquids: Shapes, Wakes and Velocities," J. Fluid Mech., 105, 61-85(1981). https://doi.org/10.1017/S002211208100311X

Cited by

  1. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors vol.55, pp.16, 2016, https://doi.org/10.1021/acs.iecr.5b04917